期刊文献+

悬浮微粒的光学捕获与光谱技术研究进展 被引量:1

Progress in Optical Trapping and Spectroscopic Measurements of Airborne Particles
原文传递
导出
摘要 光学捕获经过近几十年的发展,从光学悬浮到紧密聚焦的单光束光镊再到最近发展的多种类型的光学阱,已经可以捕获包括碳、金属氧化物、花粉、孢子、无机/有机液滴等多种不同类型的粒子,结合拉曼光谱、腔衰荡光谱或激光诱导击穿光谱可以获取悬浮微粒在原生状态下的物理和化学信息,并可以实现受控气氛环境下单粒子的化学反应研究。首先,本文根据微粒的吸光性对空气中微粒的光学捕获力的来源进行了介绍,透明微粒主要受辐射压力的作用,吸光微粒主要受光泳力的作用;然后,根据光学捕获力的不同对单光束、双光束、高斯光束和空心光束等光学捕获设计进行分类介绍;最后,综述了光学捕获与光谱技术结合起来用于单粒子研究的最新进展,并讨论了光学捕获拉曼光谱面临的挑战。 Significance Since Arthur Ashkin first demonstrated the ability to optically levitate and trap particles,optical tweezers and optical trapping have been applied in the physical,chemical,biological,material,and atmospheric sciences.Optically trapped microparticles in air are more likely to be affected by external disturbances,such as vibration or airflow,than those in liquid,which makes them difficult to trap in air.Recently,technology for optical trapping in air was developed.The gradient force generated by a high-focus laser and the photophoretic force resulting from thermal processes play dominant roles in the optical trapping of particles in air.When the particles are trapped,their physical and chemical properties can be studied using spectroscopic techniques.In this paper,the principles and experimental devices of the optical trapping of airborne particles are introduced,and the applications,progress,and challenges of optical trapping and laser spectroscopy are reviewed.Progress When a photon interacts with a particle,the partial momentum of the photon is transferred to the particle,which forms the scattering and gradient forces,where the gradient force is used to trap the particle.For r≫λ(particle radius,r;laser wavelength,λ),the ray optics model can be used to calculate the two forces(Fig.1).For r≪λ,the Rayleigh scattering model is often used.In addition,the absorbing particles will also be trapped by the photophoretic force,which results from thermal processes.A single-Gaussian-beam trap using a tightly focused single beam can trap a particle in three dimensions.It employs a high numerical aperture(NA)objective,which provides a strong gradient force at low laser power.However,the single-Gaussian-beam trap has a very short working distance,which limits its compatibility with other measuring techniques.The two counter-propagating beams can balance the scattering force and retain the gradient force so that the dual-Gaussian-beam trap can obtain a longer working distance(Fig.2).A single-beam photophoretic trap uses only a single laser beam that contains low intensity regions to trap absorbing particles.For instance,a hollow beam,usually formed using axicons,has the advantages of a simple configuration and long working distance(Fig.3).A dual-hollow-beam trap has stronger trapping robustness than a single-hollow-beam trap,and the number and size of trapping particles can be controlled by adjusting the distance between the two focal points(Fig.4).However,the two foci must be aligned with each other at a precision of sub-micrometers.Fortunately,confocal-beam traps integrate the simplicity of single-beam traps and the robustness of dual-beam traps(Fig.5).Among the above optical traps,none were able to trap both transparent and absorbing particles until the universal optical trap was developed(Fig.6).In our experiments,particles were trapped with different arrangements using different shape laser beams(Fig.7),and we realized a variety of particles trapped by dual-hollow-beam and dual-Gaussian-beam traps(Fig.8).The combination of optical trapping and spectroscopic measurements can be used to investigate the physical and chemical properties of airborne particles.Optical trapping Raman spectroscopy(OT-RS)is mainly used to study droplets;therein,the size and refractive index of aerosol droplets can be obtained from the stimulated Raman spectroscopy(Fig.9).Because the spontaneous Raman scattering intensity is weak,a higher power laser is required(Fig.10).By optimizing the slit setting,the problem of signal superposition from different positions of the droplets can be eliminated,and a high spatial resolution can be obtained(Fig.11).Compared to OT-RS of droplets,fewer studies have been reported on OT-RS of solid particles.Most solid airborne particles have arbitrary size,composition,and morphology,which introduce challenges in the repeatability of experiments.In 2012,OT-RS of carbon nanotubes was investigated for the first time using a dual-hollow-beam trap(Fig.12).Researchers have improved the trapping robustness of solid airborne particles using a variety of means and have realized OT-RS detection and rapid identification of various oxides and bioaerosols.Combined with an imaging system,it can also monitor changes in particle size and morphology.Stable trapping enables us to measure the temporal evolution processes of airborne particles in situ for a sufficiently long time.For example,the hydration and dehydration of trapped particles,the reactions of particles with the ambient atmosphere,and photochemical reactions can be investigated with OT-RS.In addition to Raman spectroscopy,optical trapping can also be combined with other laser spectroscopic techniques,such as cavity ringdown spectroscopy(Fig.14)and laser-induced breakdown spectroscopy(Fig.15).At present,research on optically trapped airborne particles is still in its infancy.Although a variety of methods,such as OT-RS,have been developed to retrieve fundamental information from airborne particles in their native states,there are still many problems in practical applications,such as weak spectral signals,complex trapping forces,and inappropriate particle introduction methods.Conclusions and Prospects In recent years,the optical trapping and spectroscopic measurement of airborne particles have been improved.In this review,optical trapping forces are briefly introduced.Diverse optical configurations used in the optical trapping of airborne particles are discussed,and the configuration simplicity and trapping robustness are evaluated.Optical trapping combined with spectroscopic techniques can characterize the physicochemical properties of a single airborne particle in its native state,and the study of heterogeneous chemical reactions under controlled environments can be realized with high temporal and spatial resolution ability.However,owing to the limitation of the trapping force,most particles reported to date are approximately 1‒50μm.It is hoped that with the development of optical trapping,there will be more research involving single nanoparticles,and the on-site monitoring of environmental particles can be realized in combination with real-time sampling apparatus.
作者 钟航 陈钧 陈骏 廖俊生 Zhong Hang;Chen Jun;Chen Jun;Liao Junsheng(Science and Technology on Surface Physics and Chemistry Laboratory,Mianyang 621908,Sichuan,China;Institute of Materials,China Academy of Engineering Physics,Mianyang 621907,Sichuan,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2024年第3期207-224,共18页 Chinese Journal of Lasers
基金 中国工程物理研究院统筹规划项目 国家自然科学基金(22102162) 国家重点研发计划(2017YFE0301506)。
关键词 光谱学 光镊 光学捕获 单颗粒 气溶胶 spectroscopy optical tweezers optical trapping single particle aerosol
  • 相关文献

参考文献5

二级参考文献19

  • 1郭松,胡敏,尚冬杰,郭庆丰,胡伟伟.基于外场观测的大气二次有机气溶胶研究[J].化学学报,2014,72(2):145-157. 被引量:18
  • 2张尧楷,陈鑫麟,肖光宗,韩翔,熊威,张斌.基于T矩阵双光束光阱的模拟仿真与优化设计[J].光学学报,2014,34(B12):263-268. 被引量:1
  • 3刘海军,陈鑫麟,肖光宗,周健,罗晖.基于后焦面法的光阱中微球亚纳米级位移测量方法[J].激光与光电子学进展,2015,52(7):118-122. 被引量:1
  • 4梁言生,姚保利,马百恒,雷铭,严绍辉,于湘华.基于纯相位液晶空间光调制器的全息光学捕获与微操纵[J].光学学报,2016,36(3):68-74. 被引量:18
  • 5梁言生,姚保利,雷铭,严绍辉,于湘华,李曼曼.基于空间光场调控技术的光学微操纵[J].光学学报,2016,36(10):283-296. 被引量:15
  • 6YuanBin Jin,XuDong Yu,Jing Zhang.Optically levitated nanosphere with high trapping frequency[J].Science China(Physics,Mechanics & Astronomy),2018,61(11):99-102. 被引量:2
  • 7熊威,尹璋琦,张晓宝,肖光宗,韩翔,罗晖.光力惯性传感技术研究进展[J].导航定位与授时,2018,5(6):1-8. 被引量:7
  • 8Nan LI,Xun-min ZHU,Wen-qiang LI,Zhen-hai FU,Meng-zhu HU,Hui-zhu HU.Review of optical tweezers in vacuum[J].Frontiers of Information Technology & Electronic Engineering,2019,20(5):655-673. 被引量:5
  • 9M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:539
  • 10张博涵,郭莉,姚冽,邹翔,季敏标.受激拉曼散射显微技术用于快速无标记病理成像[J].中国激光,2020,47(2):234-247. 被引量:9

共引文献27

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部