摘要
采用ZOA-CNN方法对电梯轴承故障进行诊断,旨在通过分析电梯运行过程中的轴承振动信号,进一步判断电梯是否存在故障。卷积神经网络(Convolutional Neural Network,CNN)具有出色的数据特征提取能力,为电梯轴承故障诊断提供了有力支持。同时结合斑马优化算法(Zebra Optimization Algorithm,ZOA)对CNN模型参数进行优化,以提升诊断性能。研究结果表明,该方法在轴承电梯故障诊断方面取得了显著的成果,其诊断准确率达到了99.75%,明显高于传统故障诊断方法对电梯故障的正确率。
This study used the ZOA-CNN method to diagnose elevator bearing faults,aiming to further determine whether there are faults in the elevator by analyzing the bearing vibration signals during elevator operation.Convolutional neural network(CNN)has excellent automatic feature extraction ability,which provides strong support for elevator bearing fault diagnosis.Meantime,the paper combined the Zebra Optimization Algorithm(ZOA)to optimize the CNN model parameters to improve diagnostic performance.The research results show that this method has achieved significant results in diagnosing elevator bearing faults,with a diagnostic accuracy of 99.75%,which is significantly higher than the correct rate of traditional fault diagnosis methods for elevator faults.
作者
王赛男
柏智
杨云涛
WANG Sai-nan;BAI Zhi;YANG Yun-tao(College of Elevator Engineering,Hunan Electrical College of Technology,Xiangtan 411101,China;School of Physics and Microelectronics,Hunan University,Changsha 410082,China)
出处
《电脑与信息技术》
2024年第2期10-13,共4页
Computer and Information Technology
基金
湖南省自然科学基金课题(项目编号:2022JJ60025、2021JJ60024)。
关键词
电梯故障
卷积神经网络
斑马优化算法
故障诊断
elevator failure
Convolutional Neural Network(CNN)
Zebra Optimization Algorithm(ZOA)
fault diagnosis