期刊文献+

光子计数探测器投影数据噪声的p-范分布统计分析

Statistical p-Norm Distribution Analysis of Noise in Photon-Counting Detector Projection Data
原文传递
导出
摘要 光子计数型能谱计算机断层扫描(CT)已成为CT成像领域的最新技术,建立精确的噪声模型可以为开发高效的能谱重建算法和降低辐射剂量提供理论支撑。通过对光子计数型能谱CT投影数据噪声进行深入分析和理论推导,提出了能谱CT投影数据噪声的p-范分布模型。首先,综合考虑光子计数探测器能量采集中的光子统计波动和电子热噪声,利用贝叶斯公式推导噪声分布模型。然后经过投影数据的密度函数拟合验证、拟合优度检验等实验环节对所提理论模型进行检验。结果表明,相比于传统分布模型,所提分布模型能够更加精准地刻画光子计数型能谱CT成像机理和物理过程。最后,对投影数据观测序列进行时间序列分析,并将预测得到的结果用于修复异常值。从仿真实验结果和实际数据实验结果可以看出,该预测值具有良好的修复效果。 Objective Spectral computed tomography(CT)is a technology that utilizes the differences in attenuation coefficients of substances across different channels,which can demonstrate significant capabilities in material identification and analysis.Particularly,photon-counting spectral CT,which significantly curtails electronic noise and enhances resolution,signifies the latest technological advancements in CT imaging.However,effects such as photon starvation,charge sharing,and pulse pile-up engender severe noise in photon-counting spectral CT,directly undermining the image reconstruction quality and hampering the applications of photon-counting spectral CT technology.Our paramount research focus lies in accurately characterizing the statistical properties of projection data noise in photon-counting detectors,designing precise spectral CT reconstruction algorithms,and suppressing noise.Methods Initially,a theoretical analysis is conducted on the statistical noise characteristics in the projection data of photon-counting detectors.Specifically,by comprehensively considering the statistical distribution of photon flux and electronic noise in the projection data,where photon flux can be characterized by a compound Poisson distribution and approximated by a Gamma distribution,and electronic noise follows a Gaussian distribution.A theoretical noise distribution model of projection data is derived by the Bayesian formula.Subsequently,a statistical inference is carried out on the proposed theoretical noise distribution model of projection data.On the one hand,the probability distribution of the noise is fitted via actual data experimentation.On the other hand,a goodness-of-fit test is conducted on the theoretical noise distribution model.Ultimately,by adopting time series analysis for prediction,the predicted values are employed to restore outliers in the projection data.Results and Discussions We derive a rigorous theoretical noise distribution model in photon-counting spectral CT projection data(Eq.9),bearing a similar expression to the univariate p-norm distribution.The rationality of characterizing the noise distribution of projection data using univariate p-norm distribution is then analyzed from three perspectives.By fitting the probability distribution of the actual data,the proposed univariate p-norm noise distribution model aligns more closely with the actual data than Gaussian,Poisson,and Gamma distributions,especially under extremely low photon flux,and the fitting degree of the proposed noise distribution model is optimal(Fig.2).A goodness-of-fit test is conducted on the proposed noise distribution.The results are shown in Table 1.The proposed noise distribution is consistent with various collected datasets and consistency is the best in datasets with low photon flux.Lastly,the restoration of outliers using predicted values shows clear improvement from both visual images(Fig.4)and quantitative assessments(Table 2).The proposed univariate p-norm distribution aptly characterizes the statistical properties of photon-counting spectral CT.However,the probability density function of the univariate p-norm distribution is challenging to calculate,and it should be transformed into a linear combination of Gaussian distribution and Laplace distribution for approximation,according to the p-value selection.Conclusions We investigate the statistical noise characteristics in the projection data of photon-counting spectral CT,and propose to employ univariate p-norm distribution to model the projection data noise.The distribution is verified by fitting actual data probability density functions and statistical inference tests.The univariate p-norm distribution can fully characterize the statistical law of observational errors.Especially under the insufficient number of photons,the univariate pnorm distribution can reach optimal when fitting the actual data distribution.The statistical probability model of projection data from the devised photon-counting detection system allows for an in-depth analysis of the system performance and accurate noise simulation during simulation experiments,and provides an accurate objective function for optimizing the likelihood functions in statistical iteration reconstruction.We explore the statistical noise characteristics of projection data in photon-counting detectors,enrich the theoretical results of X-ray spectral CT imaging systems,and provide theoretical support for the design and optimization of multi-spectral image reconstruction.
作者 郭杰 蔡爱龙 王少宇 郑治中 李磊 闫镔 Guo Jie;Cai Ailong;Wang Shaoyu;Zheng Zhizhong;Li Lei;Yan Bin(Basic of Department,PLA Strategic Support Force Information Engineering University,Zhengzhou 450001,Henan,China;Henan Key Laboratory of Imaging and Intelligent Processing,Department of Information Systems Engineering,PLA Strategic Support Force Information Engineering University,Zhengzhou 450001,Henan,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2024年第3期94-102,共9页 Acta Optica Sinica
基金 国家自然科学基金(62271504,62101596,62201616) 国家重点研发计划(2020YFC1522002)。
关键词 光子计数型能谱计算机断层扫描 投影数据噪声 拟合优度检验 一元p-范分布 时间序列分析 photon-counting spectral computed tomography projection data noise goodness-of-fit test univariate p-norm distribution time series analysis
  • 相关文献

参考文献7

二级参考文献40

  • 1P.布雷特利.模拟导论[M].北京:机械工业出版社,1991..
  • 2孙海燕.P-范分布理论及其在测量数据处理中的应用:博士论文[M].武汉:武汉测绘科技大学,1995..
  • 3波.佛.诺维茨基 伊.阿.佐格拉夫.测量结果误差估计[M].北京:中国计量出版社,1990..
  • 4Beat Fischer and Markus Hegland, Collocation, filtering and nonparametric regression, Part Ⅰ, ZfV, 1(1999), 17-24.
  • 5Von G Kampmann, B Krause, Dessau Uber die aquivalenz von Lp-norm minimierung und maximum-likelihood methode, ZfV, 11(1995), 565-570.
  • 6刘大杰,GIS空间数据的精度分析与质量控制,1999年
  • 7孙海燕,博士论文,1995年
  • 8陈希孺,非参数统计,1989年
  • 9李庆海,概率统计原理和在测量中的应用,1982年
  • 10熊邦书,魏江.变分辨率的曲面重建算法[J].系统仿真学报,2007,19(18):4126-4129. 被引量:2

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部