摘要
应用深度学习进行口腔解剖结构分割相比手动分割及传统算法分割可高效获得精准、一致性良好的分割结果。该方法可以快速获得术区解剖结构信息,进行口腔种植手术及口腔修复方案的设计。本文拟对基于锥形束计算机体层成像的深度学习在口腔种植领域解剖结构分割方面的研究进展做一综述。
Compared with manual segmentation and traditional algorithm segmentation,the application of deep learning for oral anatomical structure segmentation can obtain accurate and consistent segmentation results efficiently.This approach can quickly obtain the anatomical structure information of the surgical areas to design implant surgery and restoration.This review provides an overview of the progress in CBCT-based deep learning for anatomical structure segmentation in the field of implant dentistry.
作者
高乾程
李新东
曹明国
刘云峰
Gao Qiancheng;Li Xindong;Cao Mingguo;Liu Yunfeng(School of medicine,Lishui University,Lishui 323020,Zhejiang,China;School of Computer Science and Software,Zhaoqing University,Zhaoqing 526061,Guangdong,China;College of Mechanical Engineering,Zhejiang University of Technology,Hangzhou 310023,Zhejiang,China)
出处
《中国口腔种植学杂志》
2024年第1期82-86,共5页
Chinese Journal of Oral Implantology
基金
浙江省大学生创新创业训练计划(S202110352018)。
关键词
口腔种植
深度学习
锥形束计算机体层成像
解剖结构
分割
Implant dentistry
Deep learning
Cone beam computed tomography
Anatomical structure
Segmentation