期刊文献+

基于改进Faster R-CNN的桃树缺磷症检测研究

Research on peach phosphorus deficiency detection based on improved Faster R-CNN
下载PDF
导出
摘要 桃树缺磷症(Peach Phosphorus Deficiency, PPD)初期症状不明显、不同阶段症状差异大,而现有的基于计算机视觉的桃树病害识别模型,识别准确率不高、对不同品种识别泛化性差,为此,提出改进Faster R-CNN(Faster Region based Convolutional Neural Network)模型。首先,使用RS(Rank&Sort)-Loss函数代替区域建议网络(Region Proposal Network, RPN)中的交叉熵函数;其次,使用Soft-NMS(Non-Maximum Suppression)算法代替原有的NMS算法;最后,使用ResNeXt101网络替换原来的特征提取网络,提高对PPD识别的准确率和泛化性,并在自建PPD数据集上进行检测试验。试验结果表明:改进后的Faster R-CNN网络在自建PPD数据集上对PPD的各类别平均检测准确率达92.28%、召回率达92.31%、识别准确率达92.28%,满足实际应用要求。 The initial symptoms of peach phosphorus deficiency(PPD)are not obvious,and the symptoms differ greatly in different stages.However,the existing peach disease identification model based on computer vision has low identification accuracy and poor generalization of different varieties.Therefore,the Faster R-CNN(Faster Region based Convolutional Neural Network)model is improved.Firstly,the RS(Rank&Sort)-Loss function is used to replace the cross-entropy function in the Region Proposal Network(RPN).Secondly,the Soft-NMS(Non-Maximum Suppression)algorithm is used to replace the original NMS algorithm.Finally,ResNeXt101 network is used to replace the original feature extraction network to improve the accuracy and generalization of PPD recognition,and the detection test is carried out on the self-built PPD data set.The experimental results show that the improved Faster R-CNN network has an average detection accuracy of 92.28%,a recall rate of 92.31%and a recognition accuracy of 92.28%on the self-built PPD data set,which meets the practical application requirements.
作者 胡彦军 张烨 张平川 张彩虹 陈昭 陈旭 Hu Yanjun;Zhang Ye;Zhang Pingchuan;Zhang Caihong;Chen Zhao;Chen Xu(School of Applied Engineering,Henan University of Science and Technology,Sanmenxia,472099,China;College of Mechanical and Electrical Engineering,Xinxiang University,Xinxiang,453003,China;School of Computer Science&Technology,Henan Institute of Science and Technology,Xinxiang,453003,China)
出处 《中国农机化学报》 北大核心 2024年第4期162-167,174,共7页 Journal of Chinese Agricultural Mechanization
基金 河南省科技厅科技攻关项目(212102310553) 河南省科技厅科技攻关项目(222102210116)。
关键词 桃树缺磷症 改进Faster R-CNN RPN Soft-NMS ResNeXt101 peach phosphorus deficiency improved Faster R-CNN RPN Soft-NMS ResNeXt101
  • 相关文献

参考文献9

二级参考文献56

  • 1Felzenszwalb P, Girshick R, McAllester D, et al. Object detection with discriminatively trained part based models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
  • 2Vedaldi A, Gulshan V, Varma V, et al. Multiple kernels for object detection [C]//International Conference on Computer Vision, 2009:606-613.
  • 3Harzallah H, Jurie F, Schmid C. Combining efficient object localization and image classification [C]// International Conference on Computer Vision, 2009: 237-244.
  • 4Lampert C H, Blaschko M B, Hofmann T. Beyond sliding windows: object localization by efficient subwindow search [C]//Conference on Computer Vision and Pattern Recognition, 2008:1897-1904.
  • 5Alexe B, Deselaers T, Ferrari V. What is an object? [C]//Conference on Computer Vision and Pattern Recognition, 2010: 73-80.
  • 6Khan I, Roth P M, Bischof H. Learning object detectors from weakly-labeled intemet images [C]//OAGM Workshop, 2011: 53-61.
  • 7Siva P, Tao X. Weakly supervised object detector learning with model drift detection [C]//International Conference on Computer Vision, 2011: 343-350.
  • 8Prest A, Schmid C, Ferrari V. Weakly supervised learning of interactions between humans and objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 601-614.
  • 9Uijlings J R R, van de Sande K E A, Gevers T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
  • 10Cheng M M, Zhang Z M, Lin W Y, et al. BING: binarized normed gradients for objectness estimation at 300fps [C]//Conference on Computer Vision and Pattern Recognition, 2014: 3286-3293.

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部