期刊文献+

老年上尿路尿路上皮癌手术联合放疗效果和基于机器学习的生存预测的研究

Efficacy of surgery combined with radiotherapy for upper urinary tract urothelial carcinoma in the elderly and survival prediction based on machine learning
原文传递
导出
摘要 目的探讨老年上尿路尿路上皮癌手术联合放疗效果和基于机器学习的生存预测的研究。方法通过监测、流行病学和最终结果的数据库搜集数据。采用倾向性得分匹配两组信息。采用单因素和多因素Cox回归分析比较未放疗与放疗两组上尿路尿路上皮癌特异性生存和总生存。开发6种机器学习模型,建立预测放疗后5年肿瘤特异性生存(CSS)机器学习模型。结果根据CSS单因素和多因素分析,未接受放疗的肿瘤特异性生存降低[95%置信区间(CI):1.151~1.618],年龄80岁以上(95%CI:1.052~1.278)、单身(95%CI:1.134~2.321)、离异(95%CI:1.255~1.877)、T3~4(95%CI:1.572~2.382)、N2~3分期(95%CI:1.162~1.987),未接受化疗(95%CI:1.108~1.608)、浸润性尿路上皮癌(95%CI:1.082~2.185)和N1(95%CI:1.229~2.282)特异性生存降低。相对于其他5种机器学习模型,极端梯度提升(XGBoost)模型最优,该模型的准确度为0.922,精度为0.923,灵敏度为0.931,F1得分为0.901,曲线下面积(AUC)为0.901。结论通过筛选肿瘤特异性生存的相关因素,进一步选出术后放疗生存的最佳的机器学习预测模型。 Objective To explore the effects and survival prediction of surgery combined with radiation therapy in elderly patients with upper urinary tract urothelial carcinoma,using machine learning approaches.MethodsData were collected from the surveillance,epidemiology,and end results(SEER)database.Propensity score matching was utilized to balance information between groups.Univariate and multivariate Cox regression analyses compared cancer specific survival(CSS)and overall survival(OS)between patients who did and did not receive radiation therapy.A total of 6 machine learning models were developed,with extreme gradient boosting(XGBoost)identified as providing the best performance in predicting 5-year CSS for patients post-radiation therapy.ResultsUnivariate and multivariate analyses showed decreased tumor-specific survival for patients not receiving radiation therapy[95%confidence interval(CI):1.151-1.618],with factors such as age over 80(95%CI:1.052-1.278),being single(95%CI:1.134-2.321),divorce(95%CI:1.255-1.877),T3-4 stage(95%CI:1.572-2.382),N2-3 stage(95%CI:1.162-1.987),not receiving chemotherapy(95%CI:1.108-1.608),invasive urothelial carcinoma(95%CI:1.082-2.185),and N1 stage(95%CI:1.229-2.282).The XGBoost model outperformed 5 other machine learning models in predicting 5-year CSS,with an accuracy of 0.922,precision of 0.923,sensitivity of 0.931,F1 score of 0.901,and area under curve of 0.901.ConclusionBy screening factors related to tumor-specific survival,the best machine learning prediction model for postoperative radiotherapy survival is further selected.
作者 孙微波 孙明霞 李海婷 李子园 田勤 马丽佳 申林锘 高宇奎 闫泽晨 Sun Weibo;Sun MingXia;Li Haiting;Li Ziyuan;Tian Qin;Ma Lijia;Shen Linnuo;Gao Yukui;Yan Zechen(Department of Radiation Oncology and Oncology,Henan Provincial People's Hospital,People's Hospital of Zhengzhou University,People's Hospital of Henan University,Zhengzhou 450003,China;Department of Radiology,Henan Provincial People's Hospital,People's Hospital of Zhengzhou University,People's Hospital of Henan University,Zhengzhou 450003,China;Institute of Molecular Oncology,Zhengzhou University,Zhengzhou 450052,China;Department of Urology,The First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China;Department of Urology,The First Affiliated Hospital of Wannan Medical College,Wuhu 241001,China)
出处 《中华实验外科杂志》 CAS 2024年第3期602-605,共4页 Chinese Journal of Experimental Surgery
基金 河南省医学科技攻关计划联合共建项目(LHGJ20230060) 河南省医学科技攻关计划联合共建项目(LHGJ20210054)。
关键词 上尿路肿瘤 机器学习 预后分析 Upper tract tumors Machine learning Prognostic analysis
  • 相关文献

参考文献3

二级参考文献3

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部