期刊文献+

Production of Functional Materials Derived from Regenerated Silk Fibroin by Utilizing 3D Printing and Biomimetic Enzyme-induced Mineralization 被引量:2

原文传递
导出
摘要 Critical-sized bone defects, commonly encountered in clinical orthopedic surgery, present a significant challenge. One of the promising solutions is to prepare synthetic bone substitute materials with precise structural control, mechanical compatibility, and enhanced osteogenic induction performance, nevertheless the successful preparation of such materials remains difficult. In this study, a two-step technique,integrating an extrusion-based printing process with biomimetic mineralization induced by alkaline phosphatase(ALP), was developed. Initially,a pre-cured hydrogel of regenerated silk fibroin(RSF) with a small quantity of hydroxypropyl cellulose(HPC) and ALP was prepared through heating the mixed aqueous solution. This pre-cured hydrogel demonstrated thixotropic property and could be directly extruded into predetermined structures through a 3D-printer. Subsequently, the 3D-printed RSF-based materials with ALP underwent biomimetic in situ mineralization in calcium glycerophosphate(Ca-GP) mineralizing solution, utilizing the polymer chains of RSF as templates and ALP as a trigger for cleaving phosphate bonds of Ca-GP. The resulting 3D-printed RSF-mineral composites including hydrogel and sponge possessed adjustable compression modulus of megapascal grade and variable hydroxyapatite content, which could be controlled by manipulating the duration of the mineralization process.Moreover, these 3D-printed RSF-mineral composites demonstrated non-cytotoxicity towards rat bone marrow mesenchymal stem cells. Therefore, they may hold great potential for applications involving the replacement of tissues characterized by osteoinductivity and intricate structures.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第3期299-310,I0005,共13页 高分子科学(英文版)
基金 financially supported by the National Nature Science Foundation of China (No.21935002)。
  • 相关文献

参考文献4

二级参考文献33

  • 1Wang, X.D., Bank, R.A., TeKoppele, J.M. and Agrawal, C.M., J. Orthop. Res., 2001, 19(6): 1021.
  • 2Wu, S.L., Liu, X.M., Yeung, K.W.K., Liu, C.S. and Yang, X.J., Mat. Sci. Eng., R: Reports, 2014, 80:1.
  • 3Gelinsky, M., Welzel, P.B., Simon, P., Bernhardt, A. and Konig, U., Chem. Eng. J., 2008, 137(1): 84.
  • 4Zhang, Y. and Lu, J., Cryst. Growth Des., 2008, 8(7): 2101.
  • 5Liu, L., Liu, J.Y., Kong, X.D., Cai, Y.R. and Yao, J.M., Polym. Adv. Technol., 2011, 22(6): 909.
  • 6Dadsetan, M., Guda, T., Runge, M.B., Mijares, D., LeGeros, R.Z., LeGeros, J.P., Silliman, D.T., Lu, L.C., Wenke, J.C., Baer, P.R.B. and Yaszemski, M.J., Acta Biomater., 2015, 18:9.
  • 7Cirillo, B., Morra, M.and Catapano, G., Int. J. Artif. Organs, 2004, 27(1): 60.
  • 8Rodrigues, S.C., Salgado, C.L., Sahu, A., Garcia, M.P., Femandes, M.H. and Monteiro, F.J., J. Biomed. Mater. Res., Part A., 2013, 101(4): 1080.
  • 9Gong, H., Agustin, J., Wootton, D. and Zhou, J.G., J. Mater. Sci: Mater. Med., 2014, 25(1): 113.
  • 10Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K. and Selvamurugan, N., Int. J. Biol. Macromol., 2010, 47(1): 1.

共引文献9

同被引文献36

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部