期刊文献+

基于偏振比检测和支持向量机的颗粒在线检测

Online Particle Detection Based on Polarization Ratio Measurement and Support Vector Machine
原文传递
导出
摘要 提出一种基于偏振比检测和支持向量机的颗粒物实时检测与分类方法。采用双波长的半导体激光器作为光源,使用高灵敏度的雪崩光电二极管分别测量散射光的两个偏振分量,计算出单个颗粒散射光的偏振比,从而实现颗粒分类与识别。结合支持向量机算法与神经网络模型可进一步提升颗粒物的分类精度。针对所研究的二元及三元分类场景,分类精度分别由64%和83%提升至100%和98%。该方法在制药、化妆品以及工业生产控制与检测等领域具有很好的应用前景。 A real-time particle detection and recognition method based on polarization ratio measurement and support vector machine is proposed.A dual-wavelength semiconductor laser was used as the light source.Additionally,a highly sensitive avalanche photodiode was employed to measure the two polarization components of scattered light,following which the polarization ratio of the scattered light was measured for particle classification.Furthermore,we combined a support vector machine and a neural network model to further increase the accuracy of particle classification and recognition.For the binary and ternary classifications in our study,the classification accuracy increases from 64%and 83%to 100%and 98%,respectively.This method has excellent application prospects in the fields of pharmacy,cosmetics,industrial production control,and detection.
作者 赵儒强 李璟文 Zhao Ruqiang;Li Jingwen(School of Science,Jiangnan University,Wuxi 214122,Jiangsu,China)
机构地区 江南大学理学院
出处 《激光与光电子学进展》 CSCD 北大核心 2024年第4期253-261,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(11904135)。
关键词 光散射 偏振比 支持向量机 颗粒检测 optical scattering polarization ratio support vector machine particle detection
  • 相关文献

参考文献9

二级参考文献100

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部