期刊文献+

Bi_(2)Ga_(3.985)O_(9):1.5%Fe^(3+),Eu^(3+)长余辉材料的制备及光学性能研究 被引量:1

Preparation and Optical Properties of Bi_(2)Ga_(3.985)O_(9):1.5%Fe^(3+),Eu^(3+)Persistent Luminescent Nanoparticles
原文传递
导出
摘要 采用共沉淀法制备了Bi_(2-x)Ga_(3.985)O_(9):1.5%Fe^(3+),x Eu^(3+)(BGO:1.5%Fe^(3+),x Eu^(3+),x=0~2%)长余辉纳米粒子(PLNP),详细研究了Eu^(3+)掺杂浓度及煅烧温度对BGO:1.5%Fe^(3+)PLNP晶体结构和光学性质的影响。结果显示,最佳的PLNP组成为Bi1.99Ga3.985O9:1.5%Fe^(3+),1%Eu^(3+),属于莫来石晶体结构,发射峰处于798 nm,在900℃煅烧1 h时,可获得高纯度的BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP,其平均电子陷阱能级深度为0.676 eV。与Fe^(3+)单掺杂BGO:1.5%Fe^(3+)PLNP相比,Eu^(3+)共掺杂BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP后,荧光寿命(τ_(av))从13.77 s增大至15.56 s,余辉发光时间从3 h延长至8 h以上。由于共掺杂BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP中存在从Eu^(3+)到Fe^(3+)的能量传递,共掺杂PLNP的余辉强度增大,发光时间延长。制备了长波长发射、具有余辉发光性能的BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP,该材料在生物成像、疾病检测及生物传感等领域具有巨大的应用潜力。 Objective Near-infrared(NIR)persistent luminescence nanoparticles(PLNPs)with strong tissue penetration can avoid light scattering and fluoresce interference of tissues caused by in situ excitation,and they can be employed in the research on biological imaging and tumor diagnosis and treatment.Currently,the majority of reported PLNPs are based on Cr^(3+)as luminescent centers.The toxicity of heavy metal Cr^(3+)-doped materials poses a potential safety hazard to long-term in vivo imaging tracking and therapy.However,Fe^(3+)as a basic element of the human body is a good candidate for NIR luminescence center with broadband emission.The longer and stronger emission wavelength of NIR,coupled with its superior penetration ability,further enhances the tissue penetration depth for biological applications.Thus,it is imperative to develop a friendly NIR-PLNP with enhanced luminescence performance for Fe^(3+)-doped materials.We aim to develop Bi_(2)Ga_(3.985)O_(9):1.5%Fe^(3+),1%Eu^(3+)(BGO:1.5%Fe^(3+),1%Eu^(3+))NIR-emission PLNP materials with stronger luminescence intensity and longer emission wavelength by co-doping Eu^(3+)ions based on BGO:1.5%Fe^(3+)PLNP material.The prepared PLNP has excellent NIR luminescence and plays an important role in the in-vivo imaging without background noise and deep tissues.Methods BGO:1.5%Fe^(3+),xEu^(3+)(x=0-2%)PLNP materials are prepared by the co-precipitation method.Meanwhile,we investigate the effects of the Eu^(3+)concentration and the calcination temperature on the luminescent properties and crystal structure of BGO:1.5%Fe^(3+)PLNP material.The surface shape,element distribution mappings,valence distribution,energy transfer between Fe^(3+)and Eu^(3+),and luminescence lifetime of the BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP material are observed and analyzed.Results and Discussions Firstly,the PLNP material characterization and X-ray diffraction peaks of the BGO:1.5%Fe^(3+),xEu^(3+)(x=0-2%)PLNP materials are consistent with the Bi_(2)Ga_(4)O_(9) planes crystal(PDF#76-2240).The TEM picture shows that the average grain diameter of BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP material is about 100 nm(Fig.1).The EDS spectra and the element distribution mappings of BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP material indicate the presence of Bi,Ga,O,Fe,and Eu elements(Fig.2).The XPS spectra of BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP material reveal the presence of Bi,Ga,O,Fe,and Eu elements in a trivalent state(Fig.3).Additionally,the BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP material exhibits strong NIR emission at 798 nm with the highest luminescence intensity.The intensity of BGO:1.5%Fe^(3+)PLNP material is enhanced by co-doping the Eu^(3+)ions to obtain BGO:1.5%Fe^(3+),1%Eu^(3+).The excitation spectra show that the four peaks are at 307 nm,422 nm,464 nm,and 636 nm,and then BGO:1.5%Fe^(3+),1%Eu^(3+)with the strongest is obtained[Figs.4(a)-(b)].BGO:1.5%Fe^(3+),1%Eu^(3+)improves the luminescence intensity and duration due to the energy transfer from Eu^(3+)to Fe^(3+)[Fig.5(a)].The two-dimensional thermoluminescence curves of BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP picture show that the average electron trap energy level depth is 0.676 eV[Fig.5(b)].The CIE color coordinates picture shows that the co-doping of Eu^(3+)increases the red luminescence intensity of the material(Fig.6).The intensity of BGO:1.5%Fe^(3+)PLNP material is improved,and the average luminescence lifetime(τ_(av))increases from 13.77 s to 15.56 s by co-doped Eu^(3+)ions(Table 2).The luminescence time of PLNPs is extended from 3 h to more than 8 h[Fig.7(b)].Finally,under the calcination temperature of 900℃and calcination time of 1 h,the BGO:1.5%Fe^(3+),1%Eu^(3+)PLNP material has good crystallinity and NIR luminescence intensity(Fig.8).Conclusions BGO:1.5%Fe^(3+),xEu^(3+)(x=0-2%)PLNPs are prepared by the co-precipitation method.The effects of calcination temperature and co-doping amount of Eu^(3+)ions on the luminescence properties of BGO:1.5%Fe^(3+)PLNP are investigated.The excitation and emission spectra analysis demonstrates the existence of energy transfer from Eu^(3+)to Fe^(3+),which enhances the luminescence intensity and time of PLNPs in the NIR emission(798 nm).The optimal form is obtained to the BGO:1.5%Fe^(3+),1%Eu^(3+)with 798 nm emission,and the average electron trap energy level depth is 0.676 eV.The average luminescence lifetime(τ_(av))of BGO:1.5%Fe^(3+)and BGO:1.5%Fe^(3+),1%Eu^(3+)increases from 13.77 s to 15.56 s,and the luminescence time extends from 3 h to more than 8 h.Thus,NIR luminescence has a high penetration depth by doped Fe^(3+),which is conducive to luminescent imaging.The NIR luminescence with 798 nm emission can eliminate the influence of spontaneous and scattered light,and improve the sensitivity and signal-to-noise ratio of detection and imaging.Therefore,the proposed material will have great potential applications in bio-sensing,deep tissue imaging,and image-guided therapy.
作者 茹鲜古丽·艾外力 孙艳美 库尔班江·努尔麦提 赵天骐 热娜古丽·阿不都热合曼 尹学博 Aiwaili Ruxiangul;Sun Yanmei;Nuermaiti Kuerbanjiang;Zhao Tianqi;Abdurahman Renagul;Yin Xuebo(Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry,College of Chemistry and Environmental Science,Kashi University,Kashi 844000,Xinjiang,China;Institute for Frontier Medical Technology,School of Chemistry and Chemical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2024年第2期236-245,共10页 Acta Optica Sinica
基金 国家自然科学基金(22367015,21867014) 新疆维吾尔自治区自然科学基金(2018D01A05) 新疆维吾尔自治区“天山青年”计划科技人才培养项目(2017Q086) 喀什大学高层次人才科研启动经费(GCC18ZK-003)。
关键词 材料 近红外发光 长余辉纳米粒子 共掺杂 镓酸铋 materials near-infrared emission persistent luminescence nanoparticles co-doping bismuth gallium
  • 相关文献

参考文献16

二级参考文献109

  • 1王兆武,姬海鹏,徐坚,易莎莎,侯星慧,陈德良,解荣军.白光LED用Mn^4+激活红光荧光粉中锰离子价态表征研究进展[J].发光学报,2020,41(10):1195-1213. 被引量:10
  • 2杨小平,崔瑞瑞,张弛,邓朝勇.新型近红外超长余辉材料Zn_3Al_2Ge_2O_(10)∶Cr^(3+)的发光性能[J].发光学报,2014,35(3):300-305. 被引量:9
  • 3Bem D B, Swart H C, Luyt A S, et al. J. Appl Polym Sci., 2010,117:2635-2640.
  • 4Xiao L Y, Xiao Q, Liu Y L, et al. J. Alloys Compd., 2010, 95:72-75.
  • 5LIUYing-Liang(刘应亮),LEIBing-Fu(雷炳富),KUANGJin-Yong(邝金勇),et al.Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009,25(8):1323-1329.
  • 6LIUYing-Liang(刘应亮),DINGHong(丁红).Chinese J.Inorg. Chem.(Wuji Huaxue Xuebao), 2001,17(2):181-187.
  • 7XIAOQin(肖琴),XIAOLi-Yuan(肖丽嫒),LIUYing-Liang(刘应亮).Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao),2010,26(7): 1240-1244.
  • 8Matsuzawa T, Aoki Y, Takeuchi N, et al. J. Electrochem. Soc., 1996,143:2670-2673.
  • 9Aitasalo T, Deren P, Holsa J, et al. J. Solid State Chem.,2003,171:114-122.
  • 10Clabau F, Rocquefelte X, Jobic S, et al. Chem. Mater., 2005, 17:3904-3912.

共引文献55

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部