摘要
The rich phase behavior of block copolymers(BCPs)has drawn great attention in recent years.However,the double diamond(DD)phase is rarely obtained because of the competition between the minimization of interfacial energy and packing frustration.Here,a rod-coil BCP containing mesogen-jacketed liquid crystalline polymer is designed to acquire ordered bicontinuous network nanostructures.The reduction of internal energy originating from the orientational interaction among the rod blocks can compensate for the free energy penalty of packing frustration to stabilize the DD structure.The resulting BCP can also experience lamellae-to-DD and double gyroid-to-lamellae transitions by changing the annealing temperature.These results make the rod-coil BCP an excellent candidate for the self-assembly of ordered network structures,demonstrating great potential in nanopatterning and metamaterials.
基金
This work was financially supported by the National Natural Science Foundation of China(Nos.51921002,22203015 and 51725301)
Natural Science Foundation of Fujian Province(No.2021J01591)
the National Key R&D Program of China(No.2018YFB0703702).The suggestions and help offered by Prof.Rong-Ming Ho of National Tsing Hua University are greatly appreciated.The authors acknowledge the scientists at the synchrotron X-ray beamline 1W2A at Beijing Synchrotron Radiation Facility(BSRF)and the synchrotron X-ray beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF)for their assistance on the SAXS experiments.