期刊文献+

Ordered Bicontinuous Network Structures Regulated by Orientational Interactions in a Rod-Coil Block Copolymer

原文传递
导出
摘要 The rich phase behavior of block copolymers(BCPs)has drawn great attention in recent years.However,the double diamond(DD)phase is rarely obtained because of the competition between the minimization of interfacial energy and packing frustration.Here,a rod-coil BCP containing mesogen-jacketed liquid crystalline polymer is designed to acquire ordered bicontinuous network nanostructures.The reduction of internal energy originating from the orientational interaction among the rod blocks can compensate for the free energy penalty of packing frustration to stabilize the DD structure.The resulting BCP can also experience lamellae-to-DD and double gyroid-to-lamellae transitions by changing the annealing temperature.These results make the rod-coil BCP an excellent candidate for the self-assembly of ordered network structures,demonstrating great potential in nanopatterning and metamaterials.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第5期636-642,I0008,共8页 高分子科学(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China(Nos.51921002,22203015 and 51725301) Natural Science Foundation of Fujian Province(No.2021J01591) the National Key R&D Program of China(No.2018YFB0703702).The suggestions and help offered by Prof.Rong-Ming Ho of National Tsing Hua University are greatly appreciated.The authors acknowledge the scientists at the synchrotron X-ray beamline 1W2A at Beijing Synchrotron Radiation Facility(BSRF)and the synchrotron X-ray beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF)for their assistance on the SAXS experiments.
  • 相关文献

参考文献1

二级参考文献25

  • 1Xu H J and Zhao Z T. Current status and progresses of SSRF project. Nucl Sci Tech, 2008, 19: 1-6. DOI: 10.1016/S1001- 8042(08 )60013-5.
  • 2Liu G M, Zheng L C, Zhang X Q, et al. Critical stress for crys- tal transition in poly(butylene succinate)-based crystalline- amorphous multiblock copolymers. Macromolecules, 2014, 47: 7533-7539. DOI: 10.1021/ma501832z.
  • 3Li F G, Zhang J, Dai Y B, et al. Study of the influence of TiB2 particles on the melt structure of the hypoeutectic A1-Cu alloy by small angle X-ray scattering. Mater Chem Phys, 2014, 143: 471-475. DOI: 10.1016/j.matchemphys.2013.10.027.
  • 4Wei Z Z, Lin J Y, Tian F, et al. Synchronous stim- uli of biodegradable poly(butylene succinate-co-terephtbalate) copolymer via uniaxial stretching at varying temperatures. J Polym Sci Pol Phys, 2014, 9: 640-649. DOI: 10.1002/pol- b.23681.
  • 5Huang Y F, Xu J Z, Xu J Y, et al. Self-reinforced polyethylene blend for artificial joint application. J Mater Chem B, 2014, 2: 971-980. DOI: 10.1039/C3TB21231A.
  • 6Pan H, Zhang Y P, Shao H L, et al. Nanoconfined crystallites toughen artificial silk. J Mater Chem B, 2014, 2: 1408-1414. DOI: 10.1039/C3TB21148G.
  • 7Shen J L, Xu L F, Wang C P, et al. Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanos- tructures. Angew Chem Int Edit, 2014, 32: 8338-8342. DOI: 10.1002/anie.201402937.
  • 8Liu D M, Xiong B Q, Bian F G, et al. In situ s- tudies of microstructure evolution and properties of an Al-7.5Zn-l.7Mg-l.4Cu-0.12Zr alloy during retrogression and reaging. Mater Design, 2014, 56: 1020-1024. DOI: 10.1016/j.matdes.2013.12.006.
  • 9Su H Y, Liu Y H, Wang D, et al. Amphiphilic s- tarlike dextran wrapped superparamagnetic iron oxide nanoparticleclsuters as effective magnetic resonance imag- ing probes. Biomaterials, 2013, 34: 1193-1203. DOI: 10.1016/j.biomaterial s. 2012.10.056.
  • 10Liu F, Prehm M, Zeng X B, et al. Skeletal cubic, lamellar, and ribbon phases of bundled thermotropic bolapolyphiles. J Am Chem Soc, 2014, 136: 6846-6849. DOI: 10.1021/jaS02410e.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部