期刊文献+

基于全流程并行遗传算法的贝叶斯网络结构学习

Full process parallel genetic algorithm for Bayesian network structure learning
下载PDF
导出
摘要 为解决海量数据情况下学习贝叶斯网络(Bayesian network,BN)结构的算法性能急剧降低问题,基于Spark框架设计了一种全流程并行遗传算法用于BN结构学习(简称为SparkGA-BN)。SparkGA-BN包含互信息计算并行化、遗传算子并行化和适应度评分并行化3个部分。互信息并行计算可以高效减少搜索空间;在演化前增加对种群信息与选择信息的广播来对全种群执行选择操作。选择与交叉算子共用选择信息以并行执行,从而高效演化并减少数据落盘时间。对约束和评分两阶段产生的中间数据作记忆化存储,提升数据复用率和全局执行效率。实验结果表明,所提算法在执行效率和学习准确率方面均优于对比算法。 To solve the problem of algorithm performance degradation in Bayesian network(BN)structure learning in case of massive data,a full process parallel genetic algorithm(GA)for BN structure learning is proposed based on the Spark framework(SparkGA-BN).SparkGA-BN includes three parts:parallel calculation of mutual information,parallelization of genetic operators,and parallelization of fitness evaluation.Parallel computation of mutual information is employed to reduce the search space.Broadcasting is used to perform selection operation on the entire population by propagating population information and selection information before evolution.Selection and crossover operators share selection information to evolve efficiently and reduce disk write time.Intermediate data generated during the constraint and scoring stages are stored in memory to improve data reuse and overall execution efficiency.Experimental results show that the proposed algorithm outperforms the comparison algorithms in terms of execution efficiency and learning accuracy.
作者 蔡一鸣 马力 陆恒杨 方伟 CAI Yiming;MA Li;LU Hengyang;FANG Wie(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi 214122,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1703-1711,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(62073155,62002137,62106088,62206113)资助课题。
关键词 贝叶斯网络 结构学习 遗传算法 并行结构学习 SPARK Bayesian network(BN) structure learning genetic algorithm(GA) parallel structure learning Spark
  • 相关文献

参考文献6

二级参考文献48

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336
  • 2Pietquin O, Dutoit T. A probabilitie framework for dialog simulation and optimal strategy learning[J] IEEE Trans. on Speech and Audio Processing, 2005,14 (2) : 589 - 599.
  • 3Nikovski D. Constructing Bayesian networks for medical diagnosisfrom incomplete and partially correct statistics[J]. IEEE Trans. on Knowledge and Data Engineering, 2000,12(2) : 509 - 572.
  • 4Heckerman D. Probabilistic similarity networks[J]. Machine Learning, 1990,20(2) :1 - 36.
  • 5Wang H G, Gao X G, Thompson P C. Aircraft target recognition based on recursive inference of fuzzy discrete DBNs[C]//Proc. of the International Conference on Advanced Computer Control, 2009 183 - 186.
  • 6Duan L Z, Huang J D. Research on reliability analysis of multistate electrical systems based on Bayesian networks[C]//Proc. of the International Conference on Display and Photonics, 2010:373 - 376.
  • 7Campos L D. Independency relationships and learning algorithms for singly connected networks[J]. Experiment and Theoretical Artificial Intelligence ,1998,10(4) :511 - 549.
  • 8Campos L D, Huete J. A new approach for learning belief networks using independence criteria[J]. Appro.zimate Reasoning,2000,24(1) :11 - 37.
  • 9Wu Y H, McCall J, Corne D. Two novel ant colony optimization approaches for Bayesian network structure learning[C]// Proc. of the International Conference on Pattern Recognition, 2010:18-23.
  • 10Tamarinds I, Brown E, Aleferis C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006,65 (1) : 31 - 37.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部