摘要
本文利用Matlab对非线性函数逼近精度较高的RBF神经网络建立预测模型,以1998-2017年乌梁素海TN、TP、COD浓度的年际变化为数据,划分数据集和训练集,训练得到TN、TP和COD的RBF神经网络预测模型,通过对TN、TP和COD真实值和训练值及真实值和预测值的对比分析可得出均方根误差相对较小,证明RBF神经网络模型对水质参数的预测精度相对较高。
In this paper,Matlab is used to establish a prediction model for RBF neural network with a high nonlinear function approximation accuracy,and the interannual variation of TN,TP and COD concentrations in Wuliangsuhai from 1998 to 2017 is used as the data,and the dataset and training set are divided to obtain the RBF neural network prediction model of TN,TP and COD through training.The comparison and analysis between the true value and the trained value and between the true value and the predicted value of TP and COD shows that the root mean square error is relatively small,which proves that the RBF neural network model has a relatively high prediction accuracy for water quality parameters.
作者
马斌畅
戚乐
常君瑞
Ma Bin-chang;Qi Le;Chang Jun-rui(School of Mechanical and Electrical Engineering,Hetao College,Bayannur 015000,Inner Mongolia Autonomous Region,China;Center for Automation Research and Application,Hetao College,Bayannur 015000,Inner Mongolia Autonomous Region,China)
出处
《科学与信息化》
2024年第8期25-27,共3页
Technology and Information
基金
乌梁素海流域山水林田湖草生态保护修复试点工程支持计划项目,项目名称:基于RBF神经网络的乌梁素海水环境承载力评价研究,项目编号:2019HYYSZX
内蒙古自治区教育厅高等学校科学技术研究项目,项目名称:基于低空遥感的田间杂草识别技术及定位方法研究——以河套灌区为例,项目编号:NJZY22261。