摘要
本文基于区块链与联邦学习,对医疗数据隐私保护机制进行研究。首先阐述了本文的研究背景,分析了医疗数据隐私保护需求;然后概述了区块链、联邦学习等隐私保护技术;随后展示了基于区块链与联邦学习的医疗数据隐私保护机制,重点探讨了其具体设计方案。文章对于医疗数据的隐私保护具有重要意义,能够为相关领域的学术研究和实践应用提供有价值的参考。
This paper studies the privacy protection mechanism of medical data based on blockchain and federated learning.Firstly,the research background of this paper is elaborated,and the needs for privacy protection of medical data are analyzed;Then an overview of privacy protection technologies such as blockchain and federated learning is provided;Subsequently,a medical data privacy protection mechanism based on blockchain and federated learning is presented,with a focus on exploring its specific design scheme.This paper is of great significance for the privacy protection of medical data and can provide valuable references for academic research and practical applications in related fields.
作者
唐飞
何平逊
郭芷佟
唐麒淞
沈菊颖
Tang Fei;He Ping-xun;Guo Zhi-tong;Tang Qi-song;Shen Ju-ying(Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Yucai Secondary School,Chongqing 400050,China)
出处
《科学与信息化》
2024年第7期33-35,39,共4页
Technology and Information
基金
重庆市教育委员会雏鹰计划研究项目,项目名称:基于区块链与联邦学习的大数据安全与隐私保护机制研究,项目编号:CY220605。
关键词
区块链
联邦学习
隐私保护
统计推断
blockchain
federated learning
privacy protection
statistical inference