摘要
以单体建筑为对象的属性挂接方法已无法满足城市建筑立体空间多层差异的属性信息挂接需求。因此,提出一种基于倾斜三维数据的建筑物智能楼层提取方法,该方法利用现有二维建筑物矢量边界提取建筑物立面纹理,并在Mask R-CNN模型上增加一个特征增强结构——反向的特征金字塔(feature pyramid network,FPN),充分利用高低层特征信息,提升窗户识别检测率;同时,根据窗户排列规则进行规则化补全,然后进行层高计算、分割楼层。实验证明所提方法容错性较好,即使在窗户识别不全或有遮挡的情况下,经过简单的后处理也能实现楼层的分层。
The attribute linking method that takes the single building as the object can no longer meet the demand of attribute information linking for the multi-layer difference in 3D space of urban buildings.Therefore,we propose an intelligent method to extract building floors based on oblique photogrammetry 3D data.This method uses the existing 2D vector boundary data of the buildings to extract the facade texture of the buildings,and adds a feature enhancement structure,reverse feature pyramid network(FPN)to Mask R-CNN model to make full use of the feature information of high and low floors to improve the window recognition and detection rate.According to the rules of window arrangement,regular completion is performed,and the floor height is calculated and the floors are divided.The experiment verifies the proposed method has better fault tolerance.Even when the windows are not fully identified or blocked,the floor layering can be achieved through simple post-processing.
作者
张祖宇
孙时钟
温久民
张冠
高云龙
ZHANG Zuyu;SUN Shizhong;WEN Jiumin;ZHANG Guan;GAO Yunlong(Guangxi Zhuang Autonomous Region Institute of Geographic Information Surveying and Mapping,Liuzhou 545000,China;State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China)
出处
《测绘地理信息》
CSCD
2024年第2期56-61,共6页
Journal of Geomatics
基金
国家重点研发计划(2019YFC1520105)
应急管理部消防救援局科技计划项目(2020xfzd15)。
关键词
建筑物分层
属性挂接
深度学习
窗户提取
规则补全
building layering
attribute linking
deep learning
window extraction
rule completion