摘要
合成孔径雷达(SAR)图像在地形测绘、农作物监测等领域有重要作用。为改善SAR图像分辨率,本研究利用基于生成对抗网络(SRGAN)支持下的SAR图像超分辨率重建方式,改进模型加载数据结构,使用同一区域的哨兵一号(Sentinel-1A)雷达卫星SAR影像和高分三号卫星SAR影像形成训练模型的数据集,将哨兵一号雷达卫星SAR图像的地物细节提高到接近高分三号卫星SAR图像数据的级别。实验表明,该方法能提升极化方式为VV的哨兵一号雷达卫星SAR图像的地物细节。
Synthetic aperture radar(SAR)images play an important role in the fields of terrain mapping and crop phenology monitoring etc.In order to improve SAR image resolution,using the super-resolution reconstruction of SAR images supported by SRGAN,the model loading data structure is improved by use of Sentinel-1A radar satellite SAR images and GF-3 satellite SAR images of the same region to form the data set of training model,with the feature detail of Sentinel-1A radar satellite SAR images improved up to a level close to that of GF-3 satellite SAR image.The experiments show this method can enhance the feature detail of Sentinel-1A SAR images with the polarisation mode of VV.
作者
韦雨岑
叶子毅
庾露
WEI Yu-cen;YE Zi-yi;YU Lu(Guangxi Water&Power Design Institute Co.,Ltd.,Nanning 530023,China;Hohai University,Nanjing 210098,China;Nanning Normal University,Nanning 530001,China)
出处
《广西水利水电》
2024年第2期1-7,14,共8页
Guangxi Water Resources & Hydropower Engineering
基金
广西水利厅科研[SK-2022-017]。
关键词
生成对抗网络
SAR图像
图像超分辨率重建
super-resolution generative adversarial networks(SRGAN)
SAR images
super-resolution reconstruction of image