摘要
基于二氧化硅平面光波导平台,设计并制作了一种多模干涉马赫曾德型的低功耗热光开关。该器件结合了多模干涉耦合器的稳定性及二氧化硅波导和热光开关的低损耗等优势。经仿真,对器件参数进行了优化,并讨论了金属层与波导的间距对传输光强及功耗的影响。测试结果表明,该器件的结构稳定,偏振依赖小,插入损耗低于2 dB,能实现开关的转换,功耗为450 mW左右,开关响应时间为103µs和113µs,在1564 nm工作波长下消光比超过16 dB,尺寸为2.30 cm×0.25 mm。该器件不仅与互补金属氧化物半导体工艺相兼容,同时与光纤之间也有较好的兼容性。二氧化硅波导光开关器件具有成本低,产量大,性能稳定的优势,能给光通信及光计算的未来发展提供可靠的基础。
Based on the silicon dioxide planar waveguide platform,a low power thermo-optical switch with multi-mode interference Mach-Zender is designed and fabricated.This device combines the stability of multi-mode interference coupler with the advantages of silicon dioxide waveguide and thermo-optical switch.The device parameters are optimized by simulation and the influence of the distance between the metal layer and the waveguide on the transmitted light intensity and power consumption is discussed.The test results show that the device has stable structure,small polarization dependence,insertion loss less than 2 dB.It can realize switch conversion.The power consumption is about 450 mW.The switching response time is 103µs and 113µs.The extinction ratiOis more than 16 dB at 1564 nm wavelength,and the size is 2.3 cm×0.25 mm.The device is not only compatible with CMOS technology,but alsOhas good compatibility with optical fiber.Due to the advantages of low cost,large output and stable performance,the silicon dioxide waveguide optical switching devices provide a solid foundation for the development of optical communication and optical computing in the future.
作者
郭松
袁硕
陈益姝
玄洪文
冯吉军
GUO Song;YUAN Shuo;CHEN Yishu;XUAN Hongwen;FENG Jijun(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Greater Bay Area Branch of Aerospace Information Research Institute,Chinese Academy of Sciences,Guangzhou 510535,China)
出处
《光学仪器》
2024年第2期69-76,共8页
Optical Instruments
基金
国家重点研发计划(2022YFE0107400)
国家自然科学基金(11774235,61705130,11933005)
上海市高校特聘教授(东方学者)岗位计划(GZ2020015)。
关键词
平面光波导
多模干涉器
热光开关
光通信
光计算
planar optical waveguide
multimode interferometer
thermo-optic switch
optical communication
optical computing