期刊文献+

基于BERT-LSTM模型的WebShell文件检测研究

Research on WebShell file detection based on BERT-LSTM model
下载PDF
导出
摘要 针对基于传统规则的WebShell文件检测难度大,采用文本分类的思想,设计了一种基于BERT-LSTM模型的WebShell检测方法。首先,对现有公开的正常PHP文件和恶意PHP文件进行清洗编译,得到指令opcode码;然后,通过变换器的双向编码器表示技术(BERT)将操作码转换为特征向量;最后结合长短期记忆网络(LSTM)从文本序列角度检测特征建立分类模型。实验结果表明,该检测模型的准确率为98.95%,召回率为99.45%,F1值为99.09%,相比于其他模型检测效果更好。 Aiming at the difficulty of WebShell file detection based on traditional rules,a WebShell detection method based on BERT-LSTM model is designed using the idea of text classification.Firstly,the existing publicly available normal PHP files and malicious PHP files are cleaned and compiled to get the instruction opcode code;then,the opcode is converted into a feature vector by the bi-directional encoder representation technique(BERT)of the transformer;finally,the classification model is built by combining with the long-short-term memory network(LSTM)to detect the features from the perspective of text sequence.The experimental results show that the detection model has an accuracy of 98.95%,a recall of 99.45%,and an F1 value of 99.09%,which is better compared to other models for detection.
作者 邓全才 徐怀彬 Deng Quancai;Xu Huaibin(College of Information Engineering,Hebei University of Architecture,Zhangjiakou 075000,China)
出处 《网络安全与数据治理》 2024年第4期24-27,共4页 CYBER SECURITY AND DATA GOVERNANCE
关键词 BERT LSTM WEBSHELL PyTorch BERT LSTM WebShell PyTorch
  • 相关文献

参考文献7

二级参考文献47

  • 1李万新.Web日志数据挖掘在服务器安全方面的应用[J].中山大学学报论丛,2007,27(5):116-118. 被引量:5
  • 2刘冰.多类SVM分类算法的研究和改进.电脑知识与技术,2007,(6):1590-1593.
  • 3Xiao Yao. Large and Medium-sized Network Intrusions Cases Research[J]. Publishing House Of Electronics Industry, 2010,(10):301-310.
  • 4J. Ross Quinlan. C4. 5: programs for machine learning[M]. San Francisco: Morgan Kaufmann, 1993.
  • 5Yung-Tsung Hou, Yimeng Chang, Tsuhan Chen.Malicious web content detection by machine learning[J]. Expert Systems with Applications,2010,37(1):55-60.
  • 6Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[C]//Proceedings of IEEE Workshop on Neural Networks for Signal Processing. Amelia Island, USA: IEEE Press, 1997: 276-285.
  • 7Lin H T, Lin C J, Weng R C. A note on Plat tps probabilistic outputs for support vector machines[J]. Machine Learning, 2007, 68 (3): 267-276.
  • 8Brinker K. On multiclass active learning with support vector machines[C]//Proceedings of European Conference on Artificial Intelligence. 2004: 969-970.
  • 9Yuan X, Lai W, Mei T , et al. Automatic video genre categorization using hierarchical SVM[C]//IEEE International Conference on Image Processing. Atlanta: IEEE Press, 2006: 2905-2908.
  • 10Tong S , Chang. E Support vector machine active learning for image ret rieval[C]//Proceedings of the 9th ACM International Conference on Multimedia. Ottawa, Canada: ACM Press, 2001, 9: 107-118.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部