期刊文献+

基于时滞测量的复杂网络分布式状态估计研究

Distributed State Estimation for Complex Networks With Delayed Measurements
下载PDF
导出
摘要 研究一类存在一步随机时滞的复杂网络分布式状态估计问题,采用伯努利随机变量刻画测量值的随机时滞情况.基于复杂网络模型和不可靠测量值,分别设计复杂网络的状态预测器和分布式状态估计器,基于杨氏不等式消除节点之间的耦合项,通过优化杨氏不等式引进的参数,优化状态预测协方差.通过设计估计器增益,获得状态估计误差协方差,同时结合预测误差协方差,获得状态估计误差协方差的迭代公式,并给出估计误差协方差稳定的充分条件.最后,对由小车组成的耦合系统进行数值仿真,验证所设计估计器的有效性. This work addresses the distributed state estimation for complex networks with delayed measurements.The Bernoulli process is employed to describe the measurements with randomly occurred one step delay.The state predictor is derived based on the system mode,and the distributed state estimator is designed by using delayed measurements.The coupling term between nodes is eliminated based on Young's inequality,and the covariance of state prediction is improved by optimizing the parameters introduced by Young's inequality.Furthermore,the optimal state estimation error covariance is achieved by designing the estimator gain.Thanks to the state prediction error covariance,the iterative inequality of the state estimation error covariance is derived,and its sufficient condition for stability is established.Finally,the moving vehicles based coupled system is given to illustrate the effectiveness of the designed estimator.
作者 滕达 徐雍 鲍鸿 王卓 鲁仁全 TENG Da;XU Yong;BAO Hong;WANG Zhuo;LU Ren-Quan(Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control,School of Automation,Guangdong University of Technology,Guangzhou 510006;Hangzhou Innovation Institute(Yuhang),Beihang University,Hangzhou 310023;School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191)
出处 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期841-850,共10页 Acta Automatica Sinica
基金 广东省重点领域研发计划(2021B0101410005) 国家自然科学基金(62121004,62006043,U22A2044,61673041) 广东省特支计划本土创新创业团队(2019BT02X353) 广东省基础与应用基础研究基金项目(2021B1515420008)资助。
关键词 复杂网络 分布式状态估计 时滞测量 稳定性分析 Complex network distributed state estimation delayed measurement stability analysis
  • 相关文献

参考文献2

二级参考文献18

  • 1汪小帆;李翔;陈关荣.网络科学导论[M]北京:高等教育出版社,2012.
  • 2Liu Y Y,Slotine J J,Barabási A L. Controllability of complex networks[J].Nature,2011,(7346):167-173.
  • 3Newman M E J. Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,(06):066133.
  • 4王众讬.系统工程学[M]北京:国防工业出版社,1980.
  • 5Su H S,Wang X F. Pinning Control of Complex Networked Systems[M].Berlin:springer-verlag,2013.
  • 6Lin C T. Structural controllability[J].IEEE Transactions on Automatic Control,1974,(03):201-208.
  • 7Glover K,Silverman L M. Characterization of structural controllability[J].IEEE Transactions on Automatic Control,1976,(04):534-537.
  • 8Morari M,Stephanopoulos G. Studies in the synthesis of control structures for chemical processes:Part Ⅱ:Structural aspects and the synthesis of alternative feasible control schemes[J].AICHE Journal,1980,(02):232-246.
  • 9席裕庚.动态大系统方法导论[M]北京:国防工业出版社,1988.
  • 10Johnston R D,Barton G W,Brisk M L. Determination of the generic rank of structural matrices[J].International Journal of Control,1984,(02):257-264.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部