期刊文献+

改进2D-CNN的永磁同步电机故障诊断分析

Improved 2D-CNN-Based Fault Diagnosis Method for Permanent Magnet Synchronous Motor
下载PDF
导出
摘要 针对卷积神经网络在噪声环境中特征提取能力不足,导致永磁同步电机故障诊断出现准确率低、泛化能力差的问题,提出了一种改进二维卷积神经网络与混合注意力机制的故障诊断方法。该方法首先将采集的一维时序信号转换为二维灰度图;其次,改进多尺度特征提取模块,将该模块部分普通卷积替换为空洞卷积,以最大程度地提取到数据信号中的有效信息;然后引入混合注意力机制动态更新权重参数,强化故障特征,抑制噪声的干扰;最后使用分类器进行匝间短路故障诊断。实验结果表明:与其他方法相比,文中模型具有更好的准确性和鲁棒性;在各噪声背景下,本模型的准确率均在96%以上,表明所提方法具有较强的抗噪性能和泛化能力。 In order to solve the problem of low accuracy and poor generalization ability of permanent magnet synchronous motor fault diagnosis due to insufficient feature extraction ability of convolutional neural network in noisy environment,a fault diagnosis method with improved two-dimensional convolutional neural network and mixed attention mechanism is proposed.Firstly,the one-dimensional time sequence signal is converted into a two-dimensional gray level map.Secondly,the multi-scale feature extraction module is improved,and some ordinary convolution is replaced by empty convolution in this module,so as to extract effective information from data signals to the maximum extent.Then,the hybrid attention mechanism is introduced to dynamically update the weight parameters,strengthen the fault characteristics,and suppress the interference of noise.Finally,the classifier is used to diagnose the inter-turn short circuit fault.Experimental results show that the proposed model in this paper is more accurate and robust than other methods.Under each noise background,the accuracy of the model is above 96%,which indicates that the proposed method has strong anti-noise performance and generalization ability.
作者 毛念玲 陈辉 MAO Nianling;CHEN Hui(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《兰州工业学院学报》 2024年第2期7-12,共6页 Journal of Lanzhou Institute of Technology
基金 国家重点研发计划项目(2020YFB1314103) 安徽省重点教学研究项目(2020jyxm0458)。
关键词 电机匝间短路 故障诊断 卷积神经网络 混合注意力机制 motor interturn short circuit fault diagnosis convolutional neural network mixed attention mechanism
  • 相关文献

参考文献8

二级参考文献78

共引文献279

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部