期刊文献+

面向真实场景的单帧红外图像超分辨率重建

Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes
下载PDF
导出
摘要 现有的红外图像超分辨率重建方法主要依赖实验数据进行设计,但在面对真实环境中的复杂退化情况时,它们往往无法稳定地表现。针对这一挑战,本文提出了一种基于深度学习的新颖方法,专门针对真实场景下的红外图像超分辨率重建,构建了一个模拟真实场景下红外图像退化的模型,并提出了一个融合通道注意力与密集连接的网络结构。该结构旨在增强特征提取和图像重建能力,从而有效地提升真实场景下低分辨率红外图像的空间分辨率。通过一系列消融实验和与现有超分辨率方法的对比实验,本文方法展现了其在真实场景下红外图像处理中的有效性和优越性。实验结果显示,本文方法能够生成更锐利的边缘,并有效地消除噪声和模糊,从而显著提高图像的视觉质量。 Current infrared image super-resolution reconstruction methods,which are primarily designed based on experimental data,often fail in complex degradation scenarios encountered in real-world environments.To address this challenge,this paper presents a novel deep learning-based approach tailored for the super-resolution reconstruction of infrared images in real scenarios.The significant contributions of this research include the development of a model that simulates infrared image degradation in real-life settings and a network structure that integrates channel attention with dense connections.This structure enhances feature extraction and image reconstruction capabilities,effectively increasing the spatial resolution of low-resolution infrared images in realistic scenarios.The effectiveness and superiority of the proposed approach for processing infrared images in real-world contexts are demonstrated through a series of ablation studies and comparative experiments with existing super-resolution methods.The experimental results indicate that this method produces sharper edges and effectively eliminates noise and blur,thereby significantly improving the visual quality of the images.
作者 师奕峰 陈楠 朱芳 毛文彪 李发明 王添福 张济清 姚立斌 SHI Yifeng;CHEN Nan;ZHU Fang;MAO Wenbiao;LI Faming;WANG Tianfu;ZHANG Jiqing;YAO Libin(Kunming Institute of Physics,Kunming 650223,China)
机构地区 昆明物理研究所
出处 《红外技术》 CSCD 北大核心 2024年第4期427-436,共10页 Infrared Technology
关键词 红外图像 深度学习 超分辨 真实场景 退化模型 infrared image deep learning super-resolution real scene degradation model
  • 相关文献

参考文献4

二级参考文献10

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部