期刊文献+

基于卷积神经网络的快速SAR自聚焦方法

Fast SAR autofocus based on convolutional neural networks
下载PDF
导出
摘要 自聚焦是SAR高分辨率成像的关键技术。然而,传统的SAR自聚焦方法均需要迭代多次,实时性差,不适合在轨处理。本文提出了一种基于卷积神经网络的在轨快速SAR自聚焦方法(CNN-AF),该方法采用卷积神经网络来学习失焦图像到聚焦图像的映射,主要用于校正方位向的相位误差,由于在测试阶段该方法无须迭代和调整参数,因此该方法实时性好,更加适用于在轨处理。在真实SAR数据上的试验结果表明,本文方法具有较高的聚焦质量和聚焦速度。 Autofocus is a key technology for high-resolution synthetic aperture radar imaging.However,traditional SAR autofocus methods require too many iterations,have low computational efficiency,and are unsuitable for on-orbit processing.This paper proposes a fast SAR autofocus method based on convolutional neural networks.This method utilizes CNNs to learn the mapping from defocused images to focused images,mainly designed to correct the azimuth phase errors.It has a real-time performance and is more suitable for on-orbit processing since it does not need to iterate or adjust parameters in the testing phase.Experimental results on real SAR data show that our proposed method has the highest focusing quality and speed.
作者 刘志 杨淑媛 于子凡 冯志玺 高全伟 王敏 LIU Zhi;YANG Shuyuan;YU Zifan;FENG Zhixi;GAO Quanwei;WANG Min(Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,School of Artificial Intelligence,Xidian University,Xi'an 710071,China;National Key Laboratory of Radar Signal Processing,School of Electronic Engineering,Xidian University,Xi'an 710071,China)
出处 《测绘学报》 EI CSCD 北大核心 2024年第4期610-619,共10页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(62171357,U22B2018,62276205,61906145) 陕西省科技厅自然科学基础研究计划面上项目(2023-JC-YB-524) 陕西省教育科学“十三五”规划(SGH18H350)。
关键词 卷积神经网络 SAR 相位误差 自聚焦 convolutional neural networks SAR phase error autofocus
  • 相关文献

参考文献4

二级参考文献48

  • 1孟大地,丁赤飚.一种用于条带式SAR的自聚焦算法[J].电子与信息学报,2005,27(9):1349-1352. 被引量:12
  • 2张新,丁赤飚,吴一戎,梁兴东.一种用于条带式RD算法的组合实时PGA方法[J].电子与信息学报,2007,29(5):1065-1068. 被引量:1
  • 3李燕平,邢孟道,保铮.一种改进的相位梯度自聚焦算法[J].西安电子科技大学学报,2007,34(3):386-391. 被引量:14
  • 4李建阳,常文革,王亮.一种应用于条带SAR的改进PGA算法[J].现代雷达,2007,29(8):52-55. 被引量:3
  • 5Yadin E. SAR autofocusing viewed as adaptive beamforming on prominent scatters[C]. Record of 1994 IEEE National Radar Conference, Atlanta GA, 1994: 138-143.
  • 6Fu Tuo, Gao Mei-guo, and He Yuan. An improved scatter selection method for phase gradient autofocus algorithm in SAR/ISAR autofocus[C]. Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, Nanjing, China, 2003: 1054-1057.
  • 7Wahl D E, Eichel P H, and Ghiglia D C. Phase gradient autofocus - a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electionic Systems, 1994, 30(3): 827-835.
  • 8Zhu Dai-yin, Jiang Rui, and Mao Xin-hua. Multi-Subaperture PGA for SAR autofocusing[J]. IEEE Transactions on Aerospace and Electionic Systems, 2013, 49(1): 468-488.
  • 9Thompson D G, Bates J S, and Arnold D V. Extending the phase gradient autofocus algorithm for low-altitude Stripmap mode SAR[C]. Proceedings of the 1999 IEEE Radar Conference, Waltham, MA, 1999: 36-40.
  • 10Wahl D E, Jakowatz Jr, C V, and Thompson P A. New approach to Strip-Map SAR autofocus[C]. 1994 Sixth IEEE Digital Signal Processing Workshop, Yosemite National Park, 1994: 53-56.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部