期刊文献+

基于动态相关向量回归的燃煤锅炉烟气NO_x浓度预测模型

NOx Concentration Prediction in Flue Gas of Coal-fired Boiler Based on Dynamic Relevance Vector Regression
下载PDF
导出
摘要 针对NO_x的生成过程的高度非线性、强相关性以及动态特征,提出一种基于互信息和动态相关向量回归的烟气NO_x浓度预测模型。依托某660 MW燃煤锅炉的历史运行数据,建立动态相关向量回归模型。通过和相关向量回归、人工神经网络、极限学习机模型以及动态支持向量回归模型对比分析,提出的NO_x浓度预测模型动态跟踪性能好,预测准确性高,为锅炉燃烧参数调整和SCR系统动态优化提供了基础。 Aiming at the high nonlinearity,strong correlation and dynamic characteristics of the NOx generation process,a prediction model of flue gas NOx concentration based on mutual information(MI)and dynamic relevance vector regression(DRVR)is proposed in this paper.Relying on the historical operating data of a 660MW coal-fired boiler,an iterative relevance vector regression model is established.Through comparison and analysis with RVR model,ANN model,ELM model and DSVR model,the proposed NOx concentration prediction model has good dynamic tracking performance and high prediction accuracy,which provides a basis for boiler combustion parameter adjustment and SCR system optimization.
出处 《工业控制计算机》 2024年第4期7-9,共3页 Industrial Control Computer
关键词 NO_x浓度预测 互信息 动态相关向量回归 脱硝系统 NOx concentration prediction mutual information iterative relevance vector regression denitration system
  • 相关文献

参考文献4

二级参考文献46

  • 1王广龙,吕猛,赵文杰.基于遗传算法的电站锅炉NOx排放量LS-SVM建模[J].自动化与仪器仪表,2016(2):70-72. 被引量:8
  • 2王印松,张彩.热工模型中纯迟延时间的递归估计算法[J].电力系统及其自动化学报,2007,19(1):112-116. 被引量:10
  • 3MEHMOOD T, LILAND K H, SNIPEN L, et al. A review of variable selection methods in Partial Least Squares Regression[J]. Chemometries & Intel- ligent Laboratory Systems, 2012, 118(16) : 62-69.
  • 4TRAN H D, MUTTIL N, PERERA B J C. Selec- tion of significant input variables for time series fore- casting [J] . Environmental Modelling & Software, 2015, 64(64):156-163.
  • 5SHARMA A. Seasonal to interannual rainfall proba- bilistic forecasts for improved water supply manage- ment: part 1--a strategy for system predictor identi- fication[J]. Journal of Hydrology, 2000, 239 (1/2/3/ 4) : 232-239.
  • 6BATTITI R. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5 (4) : 537- 550.
  • 7MAY R J, MAIER H R, DANDY G C, etal. Non- linear variable selection for artificial neural networks using partial mutual information[J]. Environmental Modelling & Software, 2008, 23 : 1312-1326.
  • 8LI X, ZECCHIN A C, MAIER H R. Improving par- tial mutual information-based input variable selection by consideration of boundary issues associated with bandwidth estimation[J]. Environmental Modelling & Software, 2015, 71:78-96.
  • 9MARKOVIC I, JURIC-KAVELJ S, PETROVIC I. Partial mutual information based input variable selec- tion for supervised learning approaches to voice activi- ty detection[J]. Applied Soft Computing, 2013, 13 (11) : 4383-4391.
  • 10SILVERMAN B W. Density estimation for statistics and data analysis[M]. New York, USA: Chapman & Ha11,1986.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部