期刊文献+

考虑材料温变特性的三维轮轨接触热分析

Three-Dimensional Wheel–Rail Contact Thermal Analysis Considering Temperature-Dependent Material Property
下载PDF
导出
摘要 为研究材料温变特性对轮轨接触行为和摩擦温升的影响,提出了一种考虑材料温变特性的三维轮轨热力耦合模型,能够考虑纵、横向蠕滑率和自旋的影响,更为真实地模拟轮轨系统的服役状态.首先,研究了热力耦合建模方式对轮轨界面摩擦温升及接触应力的影响;随后,将该模型应用于地铁小半径曲线处车辆-轨道相互作用模拟.结果表明:当轮轨界面温度达到450℃时,轮轨接触应力显著降低,降幅可达20%;考虑热力耦合建模后,轮轨界面的预测温升明显低于不考虑热力耦合建模时的结果,在蠕滑率为0.16时,两者的差异可达51%;地铁车辆在小半径曲线线路上运行时轮轨摩擦温升因过大的蠕滑率与自旋会急剧增大到750℃,应考虑轮轨热力耦合建模以避免过高估计轮轨摩擦温升以及轮轨接触应力. In order to study the influence of the temperature-dependent material property on the wheel–rail contact behavior and frictional temperature rise,a three-dimensional wheel–rail thermal-mechanical coupling model considering the temperature-dependent material property was proposed in this paper,which could consider the longitudinal and lateral creepage rates and spins to simulate the service state of the wheel–rail system more realistically.In this paper,the influence of the thermal-mechanical coupling modeling method on the wheel–rail frictional temperature rise and contact stress was first studied.Subsequently,this model was applied to the simulation of vehicle–rail interaction of subways running on a small radius curve.The results show that when the temperature reaches 450℃,the wheel–rail contact stress is significantly reduced by 20%.After considering the thermal-mechanical coupling modeling,the predicted temperature rise of wheel–rail interface is significantly lower than that without considering the thermal-mechanical coupling modeling.When the creepage rate is 0.16,the difference between the two can reach 51%.Due to excessive creepage rate and spin,the wheel–rail frictional temperature rise will increase sharply to 750℃when subways run on a small radius curve.Therefore,the wheel–rail thermal-mechanical coupling modeling should be considered to avoid overestimating the wheel–rail frictional temperature rise and wheel–rail contact stress.
作者 王平 张洪吉 孙耀亮 安博洋 何庆 WANG Ping;ZHANG Hongji;SUN Yaoliang;AN Boyang;HE Qing(MOE Key Laboratory of High-Speed Railway Engineering,Southwest Jiaotong University,Chengdu 610031,China;School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《西南交通大学学报》 EI CSCD 北大核心 2024年第2期239-246,306,共9页 Journal of Southwest Jiaotong University
基金 国家自然科学基金(52108418,U1934214) 中央高校基本科研业务费(2682021CX016)。
关键词 摩擦温升 轮轨接触 热力耦合 车辆-轨道耦合动力学 轮轨损伤 frictional temperature rise wheel–rail contact thermal-mechanical coupling vehicle–rail coupling dynamics wheel–rail damage
  • 相关文献

参考文献10

二级参考文献86

  • 1朱强华,杨恺,梁钰,高效伟.基于特征正交分解的一类瞬态非线性热传导问题的新型快速分析方法[J].力学学报,2020,52(1):124-138. 被引量:11
  • 2季怀中,苏航,杨才福,张永权.车轮钢摩擦热影响区的相变及其损伤机理[J].钢铁研究学报,2005,17(4):55-59. 被引量:9
  • 3赵鑫,温泽峰,金学松.轮轨滚动摩擦温升分析[J].摩擦学学报,2005,25(4):358-363. 被引量:29
  • 4裴有福,金元生,温诗铸.轮轨接触温升的有限元分析[J].中国铁道科学,1996,17(4):48-58. 被引量:16
  • 5Knothe K, Liebelt S. Determination of temperatures for sliding contact with applications for wheel-rail systems [J]. Wear, 1995, 189(1-2): 91-99.
  • 6Gupta V, Hahn G T, Bastias P C. Calculations of the frictional heating of a locomotive wheel attending rolling plus sliding [J]. Wear, 1996, 191(1-2): 237-241.
  • 7Ertz M, Knothe K. A comparison of analytical and numerical methods for the calculation of temperature in wheel/rail contact [J]. Wear, 2002, 253(3-4): 498-508.
  • 8Fischer F D, Daves W, Wemer E A. On the temperature in the wheel-rail rolling contact [J]. Fatigue Fract Engug Mater Struct, 2003, 26(10): 999- 1006.
  • 9Kennedy T C, Plengsaard C, Harder R F. Transient heat partition factor for a sliding railcar wheel [J]. Wear, 2006, 261(7-8): 932-936.
  • 10Fischer F D, Wemer E, Yan W Y. Thermal stresses for frictional contact in wheel-rail system [J]. Wear, 1997, 211(2): 156- 163.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部