期刊文献+

Working Fluid Distribution and Charge Regulation Control in Organic Rankine Cycle

原文传递
导出
摘要 Charge-based studies,in particular investigations of mass distribution,are still almost absent,although the efficiency of the organic Rankine cycle(ORC)has attracted a great deal of scholarly attention.This paper aims to provide a new perspective on the intrinsic relationship among the mass distribution,phase-zone distribution in the heat exchanger(HEX),charge of working fuid(WF),rotation speed of the pump(RSP),and system performance.A comprehensive ORC simulation model is presented by linking each component's sub-models,including the independent models for HEX,pump,and expander in an object-oriented fashion.The visualization study of mass distribution of the WF in the system is investigated under different working conditions.Furthermore,the volume and mass of the gas phase,two-phase and liquid phase of WF in the HEX and their variation rules are analyzed in-depth.Finally,the strategies of charge reduction considering HEX areas and pipe sizes are investigated.The results show that the model based on the interior-point method provides high levels of accuracy and robustness.The mass ratio of the WF is concentrated in the liquid receiver,especially in the regenerator,which is 32.9%and 21.9%of the total mass,respectively.Furthermore,2.4 kg(6.9%)WF in the system gradually migrates to the high-temperature side as the RSP increases while 6.1 kg(17.4%)WF migrates to the low-temperature side,especially to the condenser,as the charge in the system increases.Output power and efficiency both decrease gradually after the peak due to changes in RSP and charge.Last,reducing heat transfer areas of the condenser and regenerator is the most effective way to reduce WF charge.
作者 叶振鸿 李新华 王炜 陈江平 YE Zhenhong;LI Xinhua;WANG Wei;CHEN Jiangping(Institute of Refrigeration and Cryogenics,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai High Efficient Cooling System Research Center,Shanghai 200240,China)
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期188-201,共14页 上海交通大学学报(英文版)
  • 相关文献

参考文献1

二级参考文献3

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部