期刊文献+

基于ELM和误差校正的风力发电区间预测方法 被引量:1

Wind Power Generation Interval Prediction Method Based on ELM and Error Correction
下载PDF
导出
摘要 风力发电过程中具有不稳定性和随机性,传统的点预测获得的结果准确性欠佳且无法获得预测值的区间波动范围。提出了一种基于极限学习机(ELM)和误差校正的风力发电区间预测方法。首先,使用皮尔逊相关系数挖掘出数据集中重要特征;然后,建立ELM网络生成预测值,将生成的预测值与原始的风力发电功率值作对比得到风力发电功率的误差;再将误差和原始的数据结合成新的数据集输入到已经训练好的ELM网络模型中,得到校正过后的误差;最后,通过所提出的区间构造方法得到风电功率预测区间。仿真结果表明,校正过后的误差比原始误差小,构造出的区间具有较高的可靠性和较窄的区间带宽,能更准确地描述风力发电出力范围。 The process of wind power generation has instability and randomness,and traditional point prediction results have poor accuracy and cannot obtain the range of fluctuation of predicted values.This paper proposes an interval forecasting method for wind power generation based on extreme learning machine(ELM)and error correction.First,we used the Pearson correlation coefficient to excavate important features in the data set;then,established an ELM network to generate predicted values,and compared the generated predicted values with the original wind power value to obtain the error of wind power.Then the data were combined into a new data set and input into the trained ELM network model to obtain the corrected error.Finally,the wind power prediction interval was obtained by the proposed interval construction method.The experimental simulation shows that the corrected error is smaller than the original error,and the constructed interval has higher reliability and narrower interval bandwidth,which can describe the output range of wind power generation more accurately.
作者 胡子延 温蜜 魏敏捷 HU Zi-yan;WEN Mi;WEI Min-jie(College of Computer Science and Technology,Shanghai University of Electric Power,Shanghai 200090,China;College of Electric Power Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《计算机仿真》 2024年第4期69-74,101,共7页 Computer Simulation
基金 国家自然科学基金(61872230,U1936213) 上海市学术带头人计划(21XD1421500) 上海市科委项目(20020500600)。
关键词 风力发电 特征挖掘 预测区间 极限学习机 误差校正 Wind power Feature mining Prediction interval Extreme learning machine Error correction
  • 相关文献

参考文献6

二级参考文献127

  • 1张利峰.包头地区中长期电力负荷预测研究[D].保定:华北电力大学,2010:24.
  • 2新华网.新华社受权发布中共中央关于制定十三五规划建议[EB/OL]. [2016-01-02]. http://news.xinhuanet.com/finance/2015-11/ 03/c_1117025413.html.
  • 3GWEC. Global wind power statistics 2015[R]. Brussels, Belgium: Global Wind Energy Council, 2016: 1-4.
  • 4Lujano-Rojas J M, Osório G J, Matias J C O, et al . A heuristic methodology to economic dispatch problem incorporating renewable power forecasting error and system reliability[J]. Renewable Energy, 2016, 87(3): 731-743.
  • 5Kou P, Gao F, Guan X. Stochastic predictive control of battery energy storage for wind farm dispatching: using probabilistic wind power forecasts[J]. Renewable Energy, 2015, 80(8): 286-300.
  • 6陈妮亚. 短期风电功率预测方法研究[D]. 北京:北京航空航天大学,2014.
  • 7Foley A M, Leahy P G, Marvuglia A, et al . Current methods and advances in forecasting of wind power generation[J]. Renewable Energy, 2012,37(1):1-8.
  • 8De Giorgi M G, Ficarella A, Tarantino M. Error analysis of short term wind power prediction models[J]. Applied Energy, 2011, 88(4): 1298-1311.
  • 9Zhang Y, Wang J, Wang X. Review on probabilistic forecasting of wind power generation[J]. Renewable & Sustainable Energy Reviews, 2014, 32(4): 255-270.
  • 10Yan J, Liu Y, Han S, et al . Reviews on uncertainty analysis of wind power forecasting[J]. Renewable & Sustainable Energy Reviews, 2015, 52(12):1322-1330.

共引文献248

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部