期刊文献+

改进的目标检测算法在司机室场景的应用

Application of Improved Object Detection Algorithm in Driver’s Cab Scene
下载PDF
导出
摘要 针对司机室智能分析系统中的智能检测模块进行优化改进,提升检测算法在复杂场景下的准确率。提出一种YOLOv8-DR方法,在YOLOv8的基础上引入坐标注意力机制,增加一个大尺度检测头分支,更好地捕捉玩手机等小目标的细节信息。通过实验对比,该方法提升13.5%的准确率,可实时预警规范司机驾驶行为,保证机车安全运行。 In this paper,the intelligent detection module in the intelligent analysis system of the driver’s cab is optimized and improved to improve the accuracy of the detection algorithm in complex csenarios.This paper proposes a YOLOv8-DR method,which introduces coordinate attention mechanism on the basis of YOLOv8,and adds a large-scale detection head branch to better capture the details of small targets such as playing mobile phones.Through experimental comparison,the accuracy of this method is improved by 13.5%,and the driver’s driving behavior can be warned in real time to ensure the safe operation of the locomotive.
作者 屈波 QU Bo(Information Technology Service Branch of Guoneng Baoshen Railway Group,Ordos 017000,China)
出处 《电视技术》 2024年第1期33-37,共5页 Video Engineering
关键词 司机室场景 目标检测 注意力机制 YOLOv8 driver’s cab scene object detection attention mechanisms YOLOv8
  • 相关文献

参考文献4

二级参考文献51

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部