期刊文献+

基于金属超氧物种MnO_(2)^(+)-(HCO_(3)^(-))_(n)氧化的Mn^(Ⅱ)-BAP体系降解苯胺

Degradation of Aniline by Mn^(Ⅱ)-BAP System Based on Metal Superoxide Species of MnO_(2)^(+)-(HCO_(3)^(-))_(n)
原文传递
导出
摘要 为有效处理广泛存在于地下水中的苯胺污染物,采用Mn^(Ⅱ)-BAP体系氧化苯胺,并对氧化效果、影响因素以及氧化过程中的主要活性物种做了系统探究.在氧化苯胺过程中,通过动力学实验以及掩蔽实验探究了Mn^(Ⅱ)-BAP体系氧化苯胺的最佳条件以及氧化机制.实验结果显示,Mn^(Ⅱ)-BAP体系可以在10 min内氧化99.5%的苯胺,反应速率常数为5.30×10^(-1)min^(-1).Mn^(2+)与HCO_(3)^(-)之间存在的协同作用会导致反应体系中的HCO_(3)^(-)以及Mn^(2+)的浓度对k_(obs)有着重要的影响,金属超氧物种Mn O_(2)^(+)-(HCO_(3)^(-))_(n)是Mn^(Ⅱ)-BAP体系氧化苯胺的主要活性物质. In order to effectively deal with aniline pollutants which are widely present in groundwater,the Mn^(Ⅱ)-BAP system was used to oxidize aniline,and systematically explored the oxidation process,the effect factors,and the main active species of oxidation.In the process of aniline oxidation in Mn^(Ⅱ)-BAP system,the optimal conditions and oxidation mechanism of aniline oxidation were investigated by kinetic experiments and quenching experiments.The experimental results showed that the Mn^(Ⅱ)-BAP system can oxidize 99.5%of aniline within 10 min,with a reaction rate constant of 5.30×10^(-1 )min^(-1).The synergy between Mn^(2+)and HCO_(3)^(-) will caused the concentration of HCO_(3)^(-) and Mn^(2+) in the reaction system to have an important impact on k_(obs),the superoxide species Mn O_(2)^(+)-(HCO_(3)^(-))_(n) was the main active species for aniline oxidation in the MnⅡ-BAP system.
作者 刘勇 吴佳璇 王晓艳 任红霞 Liu Yong;Wu Jiaxuan;Wang Xiaoyan;Ren Hongxia(School of Chemistry and Chemical Engineering,Tianjin University of Technology,Tianjin 300384,China;College of Chemistry,Nankai University,Tianjin 300071,China)
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期6-14,共9页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by NNSF (51978455,21806121)。
关键词 苯胺 Mn^(Ⅱ)-BAP 金属超氧物种 aniline Mn^(Ⅱ)-BAP system metal superoxide species
  • 相关文献

参考文献1

二级参考文献115

  • 1N. Bolong, A. F. Ismail, M. R. Salim, T. Matsuura, Desalination, 2009, 239, 229-246.
  • 2K. E. Murray, S. M. Thomas, A. A. Bodour, Environ. PolluX, 2010, 158, 3462-3471.
  • 3R. Rosal, A. Rodrfguez, J. A. Perdig6n-Mel6n, A. Petre, E. Gar- cia-Calvo, M. J. G6mez, A. Agiiera, A. R. Fernndez-Alba, Water Res., 2010, 44, 578-588.
  • 4S. D. Richardson, T. A. Ternes, Anal. Chem., 2011, 83, 4614-4648.
  • 5D. J. Lapworth, N. Baran, M. E. Stuart, R. S. Ward, Environ. Pollut., 2012, 163, 287-303.
  • 6N. Ratola, A. Cincinelli, A. Alves, A. Katsoyiannis, f Hazard. Mater., 2012, 239-240, 1-18.
  • 7A. D. Bokare, W. Choi,J. Hazard. Mater., 2014, 275, 121-135.
  • 8V. L. Tyagi, S. L. Lo, Environ. Sci. Biotechnol., 2011, 10, 215-242.
  • 9E. Neyens, J. Baeyens,J. Hazard. Mater., 2003, 98, 33-50.
  • 10K. Ranganathan, K, Karunagaran, D. C. Sharma, Resoar. Conserv. Recycling., 2007, 50, 306-318. 1.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部