期刊文献+

基于高阶间断伽辽金方法的两相流数值模拟

Numerical Simulation of Two-Phase Flow Based on High-Order Discontinuous Galerkin Method
下载PDF
导出
摘要 基于高阶间断伽辽金方法对可压缩两相流问题进行了数值求解。计算区域采用非结构网格划分,对于欧拉方程以及Level Set方程分别使用牛顿法以及龙格库塔方法进行迭代求解,并通过统一算法进行数据交换,实现统一框架下Level Set方程在可压缩流场中的求解。最后,通过经典二维算例对本文所提算法展开验证。通过Zalesak圆盘等算例验证了算法的高分辨率、质量守恒性及其在处理大变形问题上的优势,然后对左行激波通过氦气气泡的数值模拟,验证了本文算法对流场两相流界面复杂形状的高精度捕捉能力。 The compressible two⁃phase flow problem is numerically solved based on the high order discontinuous Galerkin method.The calculation area is divided into unstructured grids,the Euler equation and the Level Set equation are solved iteratively by Newton method and Runge Kutta method,respectively.And the unified algorithm is used for data exchange to realize the solution of the Level Set equation in the compressible flow field under the unified framework.Finally,the algorithm developed in this paper is validated by a classical 2⁃D example.The Zalesak disk and other examples are given to verify the high resolution of algorithm,mass conservation and advantages in dealing with large deformation problems.Then,the numerical simulation of left⁃running shock wave by helium bubble verifies the high accuracy of the algorithm in capturing the complex shape of the two⁃phase flow interface in the flow field.
作者 黄健健 欧阳文轩 吕宏强 HUANG Jianjian;OUYANG Wenxuan;LYU Hongqiang(College of Aerospace Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,China)
出处 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第2期273-280,共8页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 间断伽辽金 可压缩流场 两相流 Level Set 界面捕捉 discontinuous Galerkin compressible flow field two⁃phase flow Level Set interface capturing
  • 相关文献

参考文献3

二级参考文献57

  • 1蔚喜军,周铁.流体力学方程的间断有限元方法[J].计算物理,2005,22(2):108-116. 被引量:25
  • 2贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 3贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 4Lu H Q. High-order finite element solution of elastohydronamic lubrication problems[D]. Leeds,UK: University of Leeds, 2006.
  • 5Cockburn B, Kamiadakis G E, Shu C W. Discontinuous Galerkin methods: theory, computation and applications [M]. Berlin: Springer, 1999.
  • 6Bassi F, Rebay S. High-order accurate discontinuous finite element solution of the 2D Euler equations[J]. Journal of Computational Physics, 1997,138(2) :251-285.
  • 7Lu H Q, Berzins M, Goodyer C E, et al. High order discontinuous Galerkin method for elastohydrodynamic lubrication line contact problems[J]. Communications in Numerical Methods in Engineering, 2005,21(11):643-650.
  • 8Luo H, Baum J D, Lohner R. A P-multigrid discontinuous Galerkin method for the Euler equations on unstructure grids[J]. Journal of Computational Physics, 2006,211(2): 767-783.
  • 9Hartmann R. Adaptive finite element methods for the compressible Euler equations[D]. Heidelberg, Germany: University of Heidelberg, 2002.
  • 10Marinak M M, Haan S W, Tipton R E, Weber S V, Remington B A. Three-dimensional simulations of ablative hydrodynamic instabilities in indirectly driven targets [R]. UCRL-LR-105821-95-3, 168- 178.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部