期刊文献+

High-yield and rapid isolation of extracellular vesicles by flocculation via orbital acoustic trapping:FLOAT

原文传递
导出
摘要 Extracellular vesicles(EVs)have been identified as promising biomarkers for the noninvasive diagnosis of various diseases.However,challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities.Here,we report a high-yield(>90%)and rapid(<10 min)EV isolation method called FLocculation via Orbital Acoustic Trapping(FLOAT).The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets.By adding a thermoresponsive polymer flocculant,nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet.We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein,addressing a significant obstacle in the development of EV-based liquid biopsies.Due to its high-yield nature,FLOAT reduces biofluid starting volume requirements by a factor of 100(from 20 mL to 200µL),demonstrating its promising potential in point-of-care diagnostics.
出处 《Microsystems & Nanoengineering》 SCIE EI CSCD 2024年第1期313-323,共11页 微系统与纳米工程(英文)
基金 supported by the National Institutes of Health(R01HD103727,UH3TR002978,U18TR003778,R01GM141055,R01GM132603,R01GM145960,R01GM144417,and R01GM135486) the National Science Foundation(CMMI-2104295) the National Science Foundation Graduate Research Fellowship(2139754).
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部