摘要
大学生体质健康测试成绩是评价学生体质健康的重要标准,科学有效地对体测成绩进行预测分析是其他研究的基础。该研究运用径向基函数神经网络对某大学XX学院学生2022年体质健康测试数据进行预测和分析,并与BP神经网络、支持向量机等方法分类预测结果进行对比。试验结果表明,该预测模型具有较高的预测准确率和较好的泛化性能,为后续体育教师开展教学,相关学者开展研究提供了科学有效的分析方法。
The scores of physical fitness tests for college students are important indicators for evaluating their physical health.Scientific and effective prediction and analysis of physical fitness test scores serve as the basis for other research.In this paper,a prediction method for college student physical fitness test scores based on Radial Basis Function Neural Networks(RBFNN)is proposed.The RBFNN is used to predict and analyze the physical fitness test data of students of a certain university in 2022,and the classification prediction results are compared with those of Back Propagation Neural Network(BPNN),Support Vector Machines(SVM),and other methods.The experimental results demonstrate that the proposed prediction model based on RBFNN exhibits high prediction accuracy and good generalization performance for college student physical fitness test scores.It provides a scientifically effective analysis method for physical education teachers'teaching and researchers'subsequent studies.
作者
方俊杰
李凤双
刘永明
赵转哲
谢叶寿
FANG Junjie;LI Fengshuang;LIU Yongming;ZHAO Zhuanzhe;XIE Yeshou(College of Physical Education,Anhui Polytechnic University,Wuhu Anhui 241000,China;School of Artificial Intelligence,Anhui Polytechnic University,Wuhu Anhui 241000,China;Anhui Provincial Key Laboratory of Discipline Co-construction on Intelligent Equipment Quality and Reliability,Wuhu Anhui 241000,China)
出处
《佳木斯大学学报(自然科学版)》
CAS
2024年第3期145-148,180,共5页
Journal of Jiamusi University:Natural Science Edition
关键词
径向基函数神经网络
体质健康测试
成绩预测
Radial Basis Function Neural Networks
physical health test
grade prediction