摘要
为准确量化复杂场景下光伏预测功率的不确定性,提出了一种基于时序卷积网络-注意力机制-长短期记忆网络组合的光伏功率短期概率预测方法。首先,基于多种相关性分析方法选出与光伏功率强相关的气象因素;然后,基于时序卷积网络的特征提取能力和长短期记忆网络的时序特征建模能力,并结合注意力机制和分位数回归,建立组合深度学习预测模型;最后,采用核密度估计方法生成连续概率密度函数。以实际集中式和分布式光伏电站为案例进行分析,结果表明:与长短期记忆网络、时序卷积网络、时序卷积网络-注意力机制和时序卷积网络-长短期记忆网络相比,所提方法在确保最优预测区间的同时,可以提升概率密度预测的性能。
To accurately quantify the uncertainty in the predicted photovoltaic(PV)power in complex scenarios,a short-term probabilistic prediction method for PV power based on a combination of temporal convolutional networks-attention mechanism-long short-term memory networks is proposed in this paper.Firstly,mete-orological factors strongly correlated with PV power are selected based on multiple correlation analysis methods.Then,a combined deep learning prediction model is built based on the feature extraction capability of the temporal convolutional network and the temporal feature modeling capability of the long and short-term memory network,combined with the attention mechanism and quantile regression.Finally,a kernel density estimation method is used to generate a continuous probability density function.The cases of actual centralized and distributed PV plants are analyzed,and the results show that compared with long short-term memory networks,temporal convolutional networks,temporal convolutional networks-attention mechanism,and temporal convolutional networks-long short-term memory networks,the proposed method can improve the performance of probability density prediction while ensuring the optimal prediction interval.
作者
高岩
吴汉斌
张纪欣
张华铭
张沛
GAO Yan;WU Hanbin;ZHANG Jixin;ZHANG Huaming;ZHANG Pei(Baoding Power Supply Branch,State Grid Hebei Electric Power Co.,Ltd.,Baoding 071000,China;Beijing Qingsoft Innovation Technology Co.,Ltd.,Beijing 102208,China;School of Electrical Engineering,Beijing Jiaotong University,Beijing 100089,China)
出处
《中国电力》
CSCD
北大核心
2024年第4期100-110,共11页
Electric Power
基金
国网河北省电力公司科技项目(含高比例分布式光伏的多级电网负荷预测方法研究及应用,kj2022-051)。
关键词
概率预测
时序卷积网络
长短期记忆网络
注意力机制
probabilistic prediction
temporal convolutional network
long short-term memory network
attention mechanism