期刊文献+

Forward robust portfolio selection: The binomial case 被引量:3

原文传递
导出
摘要 We introduce a new approach for optimal portfolio choice under model ambiguity by incorporating predictable forward preferences in the framework of Angoshtari et al.[2].The investor reassesses and revises the model ambiguity set incrementally in time while,also,updating his risk preferences forward in time.This dynamic alignment of preferences and ambiguity updating results in time-consistent policies and provides a richer,more accurate learning setting.For each investment period,the investor solves a worst-case portfolio optimization over possible market models,which are represented via a Wasserstein neighborhood centered at a binomial distribution.Duality methods from Gao and Kleywegt[10];Blanchet and Murthy[8]are used to solve the optimization problem over a suitable set of measures,yielding an explicit optimal portfolio in the linear case.We analyze the case of linear and quadratic utilities,and provide numerical results.
出处 《Probability, Uncertainty and Quantitative Risk》 2024年第1期107-122,共16页 概率、不确定性与定量风险(英文)
  • 相关文献

参考文献1

共引文献4

同被引文献3

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部