摘要
麦克斯韦电磁学研究之根本目的在于整合以往发现的关于电、磁以及电磁感应定律于一体,进行统一的表征。以往研究认为,麦克斯韦早年是在机械论物理学框架下展开其研究的,而后期则放弃机械论转向分析数学的表征方式。重审麦克斯韦的电磁学研究进程,可以发现:(1)麦克斯韦的确是沿着开尔文进路——建立电磁感应的物理模型并据之展开数学表征——开启其电磁学研究的,但是,为了实现其电磁学综合之目的,最终他将四元数法引入场论电磁学才得以完成数学表征;(2)麦克斯韦并没有在哲学上放弃机械论,没有转向超距作用,他最终决定采用唯象表征进路而不再在意机械论模型,是因为这可以帮助他避开W·汤姆森以来场论电磁学在建构电磁以太理论的类比或模型时的困难;(3)随之而来的结果是,麦克斯韦的唯象研究与表征进路终将替代开尔文进路。
The fundamental purpose of Maxwell's electromagnetism research is to integrate the previously discovered laws of electricity,magnetism and electromagnetic induction into a unified representation.According to previous studies,Maxwell in his early years worked within the framework of mechanistic physics,and later he gave up the mechanical approach and turned to the style of presentation of analytical mathematics.Reexamining Maxwell's electromagnetics research process,it can be find out that:(1)Maxwell indeed started his electromagnetics research along the Kelvin path,which means that mathematical presentation must be set up on the basis of the building of a physical model of electromagnetic induction,however,in order to realize his electromagnetics synthesis,he finally completed the related mathematical representation by introducing the quaternion method into field electromagnetics;(2)Maxwell neither abandoned mechanism philosophically,nor turn to action at a distance,and he finally took no longer care of mechanical models and turn to the phenomenological representation approach,because it would help him avoid the difficulties of field electromagnetism since W.Thomson in constructing analogies or models of electromagnetic aether;(3)The result is that,Maxwell's phenomenological research and characterization approach would eventually replace Kelvin's approach.
作者
鲍傅臻
袁江洋
BAO Fu-zhen;YUAN Jiang-yang(School of Humanities,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《自然辩证法研究》
CSSCI
北大核心
2024年第3期104-111,共8页
Studies in Dialectics of Nature
基金
国家社会科学基金中国历史研究院重大历史问题研究专项“近代以来的科技进步与社会变迁”(22VLS017)。
关键词
麦克斯韦
电磁学
开尔文进路
唯象进路
四元数法
Maxwell
electromagnetism
Kelvin Approach
phenomenology approach
calculus of quaternions