期刊文献+

基于自适应分层滑模的塔式起重机防摆与定位控制

Anti-swing and positioning control of tower cranes based on adaptive hierarchical sliding mode
下载PDF
导出
摘要 针对三维空间中呈现二级摆结构的塔式起重机的防摆与定位控制问题,考虑变幅回转联合运行工况,提出了一种自适应分层滑模控制方案。首先将塔式起重机系统分为定位子系统、一级摆角子系统和二级摆角子系统,设计了分层滑模控制律;然后设计了自适应律,提高了系统对参数的适应性和对外在干扰的抑制性能;最后验证了系统的稳定性并对系统进行了仿真。仿真结果表明,系统在受到瞬时扰动时,自适应律可估算出扰动大小,控制器能快速做出反应,调整控制力/力矩以抵消瞬时扰动,使瞬时扰动不对系统的位置以及吊钩和负载的摆角造成明显影响。该文自适应分层滑模控制器能在一定程度上抑制瞬时扰动造成的吊钩和负载的摆动,具有较好的鲁棒性。 To solve the anti-swing positioning control problem of a tower crane with two-stage swing structure in three-dimensional space,an adaptive hierarchical sliding mode control scheme is proposed considering the combined operation condition of luffing and slewing.Firstly,the tower crane system is divided into positioning subsystem,one-stage swing angle subsystem and two-stage swing angle subsystem,and a hierarchical sliding mode control law is designed;then an adaptive law is designed to improve the adaptability of the system to parameters and the suppression performance of external interference;finally,the stability of the system is verified and the system is simulated.The simulation results show that when the system is subjected to instantaneous disturbances,the adaptive law estimates the size of the disturbance,and the controller quickly respondes by adjusting the control force/torque to offset the instantaneous disturbance,so that the instantaneous disturbance does not have a significant impact on the position of the system and the swing angle of the hook and load.The adaptive layered sliding mode controller here suppresses the swinging of hooks and loads caused by instantaneous disturbances with good robustness.
作者 王丁军 周慧 叶嵩 郭毓 郭健 Wang Dingjun;Zhou Hui;Ye Song;Guo Yu;Guo Jian(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China;The Third Construction Co.,Ltd.of China Construction Eighth Engineering Bureau,Nanjing 210023,China)
出处 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期165-174,共10页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61973167) 江苏省建设系统科技项目(2019ZD001244,2019ZD001252) 江苏高校优势学科建设工程。
关键词 自适应控制 分层滑模控制 塔式起重机 防摆 定位 瞬时扰动 位置 摆角 adaptive control hierarchical sliding mode control tower cranes anti-swing positioning instantaneous disturbance position swing angle
  • 相关文献

参考文献1

二级参考文献15

  • 1OMAR H M, NAYFEH A H. A simple adaptive feedback controller for tower cranes[ C ] //Proc, of 18'h Biennial Conference on Mechanical Vibration and Noise, Pittsburgh:American Society of Mechanical Engineers ,2001:2611-2621.
  • 2S CHATYERJEE. Vibration control by recursive time-delayed acceleration feedback[ J ]. Journal of Sound and Vibration, 2008, 317(1-2) :67-90.
  • 3KUNIHIKO NAKAZONO, KOUHEI OHNISHI,HIROSHI KINJIO, et al. Vibration control of load for rotary crane system using neural network with GA-based training[J]. Artificial Life and Robotics,2008,13( 1 ) :98-101.
  • 4JORG NEUPERT, ECKHARD ARNOLD, KLAUS SCHNEIDER, et al. Tmeking and anti-sway control for boom cranes [ J ]. Con- trol Engineering Practice,2010,18 (1) :31-44.
  • 5DAVID BLACKBURN, JASON LAWRENCE, JON DANIELSON, et al. Radial-motion assisted command shapers for nonlinear tower crane rotational slewing [ J ]. Control Engineea4ng Practice,2010,18 (5) :523-531.
  • 6MEHMET ONDER. Fractional order sliding mode control with reaching law approach[ J ]. Turkish Journal Electrical Engineering & Computer Sciences,2010,18 (5) :731-747.
  • 7S HASSAN HOSSEINNIA, INES TEJADO, BIAS M VINAGRE, et al. Boolean-based fractional order SMC for switching sys- toms : application to a DC-DC buck converter [ J ]. Signal, Image and Video Processing,2012,6 ( 3 ) :445 -451.
  • 8MOHAMMAD P A. Finite-time chaos control and synchronization of fractional-order non- autonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique[J]. Nonlinear Dynamics ,2012,69(4) :247-261.
  • 9VINAGRE B M, PODLUBNY I , HERNANDEZ A, et. al. Some approximations of fractional order operators used in control the- ory and applications [ J ]. Fractional Calculus and Applied Analysis ,2000,3 (3) :231-248.
  • 10HADI DELAVARI DUNITRU BALEANU, JALIL SADATI. Stability analysis of Caputo fractional-order nonlinear systems revis- ited[J]. Nonlinear Dynamics,2012,67(4) :2433-2439.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部