期刊文献+

*-代数上非线性A^(*)B-B^(*)A型导子

Nonlinear A^(*)B−B^(*)A Type Derivations on*-algebras
原文传递
导出
摘要 设A是含单位元I和非平凡投影P的*-代数,满足:若XAP={0},则X=0;且若XA(I-P)={0},则X=0.本文证明了φ是A上的非线性A^(*)B-B^(*)A型导子当且仅当φ是可加的*-导子.并将这个结果应用到素*-代数、无中心和的I1型von Neumann代数、因子von Neumann代数和标准算子代数. Let A be a unital*-algebra with the unit I and a nontrivial projection P.Suppose that A satisfies XAP={0}implies X=0 and XA(I−P)={0}implies X=0.We prove thatis a nonlinear A*B−B*A type derivation on A if and only ifis an additive*-derivation.This is then applied to prime*-algebra,von Neumann algebras of type I1 with no central summands,factor von Neumann algebras and standard operator algebras.
作者 张芳娟 ZHANG Fangjuan(School of Science,Xi’an University of Posts and Telecommunications,Xi’an,Shaanxi,710121,P.R.China)
出处 《数学进展》 CSCD 北大核心 2024年第2期367-380,共14页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11601420) Natural Science Basic Research Plan in Shaanxi Province(No.2018JM1053)。
关键词 A^(*)B-B^(*)A型导子 *-导子 von Neumann代数 A^(*)B−B^(*)A type derivation *-derivation von Neumann algebra
  • 相关文献

参考文献5

二级参考文献23

  • 1Johnson B. E., Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 1996, 120: 455-473.
  • 2Cheung W. S., Lie derivation of triangular algebras, Linear and Multilinear Algebra., 2003, 51: 299-310.
  • 3Mathieu M., Villena A. R., The structure of Lie derivations on algebras, J. Funct Anal., 2003, 202-" 504-525.
  • 4Zhang J., Lie derivations on nest subalgebras of von Neumann algebras, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 657-664.
  • 5Zhang J., Du W., Lie derivations on certain CSL algebras, Acta Mathematica Sinica, Chinese Series, 2008, 51(3): 475-480.
  • 6Breaar M., Commuting traces of biadditive mappings commutativity-preserving mappings and lie mappings, Trans. Amer. Math. Soc., 1993, 335: 525-546.
  • 7Bresar M., Semrl P., Commuting traces of biaditive maps revisited, Comm. Algebra., 2003, 31: 381-388.
  • 8Bresar M., Commuting maps: a survey, Taiwan Residents J. Math., 2004, 8:361 397.
  • 9Benkovic D., Erita D., Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra., 2004, 280:797-824.
  • 10Cheng W. S., Commuting maps of triangular algebras, J. London Math. Soc., 2001, 63: 117-127.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部