摘要
文章以深度强化学习模型为核心,研究了云计算环境下的数据通信智能路由算法。通过状态空间建模、动作空间定义、奖励机制及深度强化学习算法的综合应用,实现了对系统性能多方面的综合优化。在对比实验中,将该智能路由算法与传统路由协议进行了全面对比,验证了其在收敛时间、数据传输效率、路由表更新频率以及负载均衡性能等关键指标上的优越性。这些研究结果不仅为云计算环境下智能路由的应用提供了创新性的思路,也为构建更智能、高效的云计算系统奠定了基础。
The article focuses on deep reinforcement learning models as the core,researching intelligent routing algorithms for data communication in cloud computing environments.Through comprehensive optimization of system performance,achieved by modeling the state space,defining action space,implementing reward mechanisms,and applying deep reinforcement learning algorithms.In comparative experiments,the intelligent routing algorithm was comprehensively compared with traditional routing protocols,verifying its superiority in key metrics such as convergence time,data transmission efficiency,routing table update frequency,and load balancing performance.These research findings not only provide innovative ideas for the application of intelligent routing in cloud computing environments but also lay the foundation for constructing more intelligent and efficient cloud computing systems.
作者
张光艳
ZHANG Guangyan(Beijing Municipal Party Committee School(Beijing Administration Institute),Beijing 100044,China)
出处
《通信电源技术》
2024年第5期176-178,共3页
Telecom Power Technology
关键词
智能路由算法
云计算
数据通信
强化学习
intelligent routing algorithm
cloud computing
data communication
reinforcement learning