期刊文献+

A Deep Learning Method for Computing Eigenvalues of the Fractional Schrödinger Operator 被引量:1

原文传递
导出
摘要 The authors present a novel deep learning method for computing eigenvalues of the fractional Schrödinger operator.The proposed approach combines a newly developed loss function with an innovative neural network architecture that incorporates prior knowledge of the problem.These improvements enable the proposed method to handle both high-dimensional problems and problems posed on irregular bounded domains.The authors successfully compute up to the first 30 eigenvalues for various fractional Schrödinger operators.As an application,the authors share a conjecture to the fractional order isospectral problem that has not yet been studied.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期391-412,共22页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.12371438 and 12326336.
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部