摘要
针对传统烧结压制成型的离合器摩擦片磨损率过高和摩擦层粘结稳定性不足而引起的脱落等问题,采用激光熔覆工艺制造方法,选取Laserline LDF 6000-100半导体激光器,对铜基粉末冶金摩擦材料的熔覆层进行制备。对制备的摩擦片进行了SEM测试与分析,并应用MM-3000型性能试验机进行摩擦性能和磨损试验测试,研究了经激光熔覆工艺制备的湿式离合器在典型工况条件下的摩擦特性。结果表明:经激光熔覆技术制备的摩擦层组织致密、无明显裂纹缺陷,具有良好的耐磨性能,相较于烧结压制工艺摩擦片磨损率降低了59.76%;不同接合压力下的最大滑摩功均随转速的增加而增加;摩擦转矩在离合器完全结合后能迅速达到最大值,此时等效摩擦系数也相应达到极值。
Aiming at the problems of high wear rate and friction layer fell off due to insufficient bonding stability of clutch friction plate formed by traditional sintering and pressing,the laser cladding process was used to prepare the cladding layer of the copper-based powder metallurgy friction materials by using Laserline LDF 6000-100 semiconductor laser.The prepared friction plate was tested and analyzed by SEM,and the friction performance and wear test were carried out by MM-3000 performance testing machine,and the friction characteristics of the wet clutch prepared by laser cladding process under typical working conditions were studied.The results show that the friction layer prepared by laser cladding technology has a dense structure,without obvious crack defects,and has good wear resistance.Compared with the sintering and pressing process,the wear rate of the friction plate reduces by 59.76%.The maximum slipping friction work under different engagement pressures increases with the increase of rotational speed.The friction torque can quickly reach the maximum value after the clutch is fully engaged,and the equivalent friction coefficient also reaches the extreme value at this time.
作者
李杰
顾佳玲
LI Jie;GU Jialing(School of Mechanical-electronic and Automobile Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
出处
《热加工工艺》
北大核心
2024年第2期140-144,148,共6页
Hot Working Technology
基金
国家自然科学基金项目(51675494)
北京建筑大学金字塔人才培养工程项目(JDJQ20200308)。
关键词
激光熔覆
摩擦特性
等效摩擦系数
磨损率
laser cladding
friction characteristics
equivalent friction coefficient
wear rate