摘要
针对现有方法在文本分类任务中没有综合考虑文本的层级结构和标签对于文本特征学习的重要性而导致的鲁棒性不足、表达能力不足等问题,提出了一种基于双曲图注意力网络的短文本分类算法L-HGAT。利用文本的复杂层级结构与双曲空间的树相似性特征的契合性,将文本嵌入到具有负常数曲率的双曲空间中,充分利用双曲流行表征的强大表达能力。设计双曲图注意力网络,融合节点特征与边特征,增强对文本中关键局部信息的聚合能力。使用基于双曲空间中的测地线距离的标签文本交互函数进一步引导文本特征学习,以此提升文本分类精度。实验结果表明,与基准模型相比,所提方法在基准数据集上显著优于现有研究方法,能够有效地提升模型性能,更好地完成文本分类任务。
In view of the lack of robustness and expression ability caused by the existing methods’failure to comprehen�sively consider the importance of text hierarchy and labels for text feature learning in text classification tasks,a short text classification algorithm L-HGAT based on hyperbolic attention network is proposed.Considering the compatibility between the hierarchical structure of the text and the tree similarity features of the hyperbolic space,the text is embedded into the hyperbolic space with negative constant curvature,making full use of the powerful expression ability of hyperbolic popu�lar representation.Then the hyperbolic graph attention network is designed,which combines node features and edge fea�tures to enhance the ability to aggregate key local information in the text.Finally,the interaction function between label and text based on the geodesic distance in hyperbolic space is used to further guide the text feature learning,so as to improve the classification performance.Experimental results show that L-HGAT significantly outperforms existing research methods on benchmark datasets and can effectively improve the model performance and complete the text classification task better.
作者
宋建平
王毅
孙开伟
刘期烈
SONG Jianping;WANG Yi;SUN Kaiwei;LIU Qilie(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处
《计算机工程与应用》
CSCD
北大核心
2024年第9期188-195,共8页
Computer Engineering and Applications
基金
重庆市自然科学基金重点项目(cstc2019jcyj-zdxm0008)
重庆市教委重点项目(KJZD-K201900605)。
关键词
文本分类
图神经网络
双曲空间
深度学习
表示学习
text classification
graph neural network
hyperbolic space
deep learning
representation learning