期刊文献+

具有双储层结构的动态误差补偿回声状态网络

A new echo state network with a double reservoir compensates for dynamic error
下载PDF
导出
摘要 针对传统回声状态网络难以有效应对高阶非线性复杂模型问题,本文在理论分析的基础上提出了一种双储层结构的误差补偿回声状态网络,并设计了该网络的学习算法.该网络由计算层和补偿层构成,计算层主要承担拟合任务,补偿层则作为状态跟随器,实时补偿由于计算层对期望方差估计不足而导致的幅值偏差.对多阶振荡器和真实高阶非线性数据集的实验结果表明,本文所提网络结构较常规网络具有更高的稳定性和泛化性能,尤其对高阶非线性复杂模型的预测精度大幅度提升. The traditional echo state network is challenging to deal with the high-order nonlinear complex model effectively.We proposed an error trace reservoir computing and designed the optimal network algorithm.This new reservoir computing structure consists of a computing layer and a compensation layer.The computing layer mainly undertakes the fitting task,and the compensation layer acts as an error trace function.Because the computing layer always has an insufficient variance estimation,it will lead to unstable neural network prediction.Thus,we proposed the compensation layer to trace neural network error in real-time.The numerical experiments on modeling the multiple superimposed oscillators and nonlinear data sets demonstrate that error trace reservoir structure has higher stability and generalization performance than the conventional network,especially in the high order nonlinear complex models.
作者 张昭昭 朱应钦 余文 ZHANG Zhao-zhao;ZHU Ying-qin;YU Wen(College of computer Science and Technology,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China;Department of the Control Automatic,CINVESTAV-IPN(National Polytechnic Institute),Mexico city 07360,Mexico)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第3期385-395,共11页 Control Theory & Applications
基金 陕西省自然科学基础研究计划陕煤联合基金资助项目(2019JLZ-08) 陕西省自然科学基础研究计划资助项目(2020JM-522,2021JM-396)资助.
关键词 回声状态网络 高阶非线性复杂模型 补偿回声状态网络 多阶振荡器 echo state network high order nonlinear complex model compensating echo state network multiple superimposed oscillator
  • 相关文献

参考文献10

二级参考文献83

  • 1王祖光,由臣,秦世麒,朱易,马金亭.D型(钨铼)热电偶用补偿导线合金丝的研究[J].工业计量,2012,22(S2):9-11. 被引量:3
  • 2史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 3Jaeger H, Hass H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science, 2004, 304(5667): 78-80.
  • 4Ongenae F, Van Looy S, Verstraeten D, Verplancke T, Benoit D, De Turck F, Dhaene T, Schrauwen B, Decruyenaere J. Time series classification for the prediction of dialysis in critically ill patients using echo state networks. Engineering Applications of Artificial Intelligence, 2013, 26(3): 984-996.
  • 5Li G Q, Niu P F, Zhang W P, Zhang Y. Control of discrete chaotic systems based on echo state network modeling with an adaptive noise canceler. Knowledge-Based Systems, 2012, 35: 35-40.
  • 6Lukosevicius M, Jaeger H. Reservoir computing approaches to recurrent neural network training. Computer Science Review, 2009, 3(3): 127-149.
  • 7Rong H J, Ong Y S, Tan A H, Zhu Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing, 2008, 72(1-3): 359-366.
  • 8Dutoit X, Schrauwen B, Van Campenhout J, Stroobandt D, Van Brussel H, Nuttin M. Pruning and regularization in reservoir computing. Neurocomputing, 2009, 72(7-9): 1534-1546.
  • 9Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OP-ELM: optimally pruned extreme learning machine. IEEE Transactions on Neural Networks, 2010, 21(1): 158-162.
  • 10Kump P, Bai E W, Chan K S, Eichinger B, Li K. Variable selection via RIVAL (removing irrelevant variables amidst LASSO iterations) and its application to nuclear material detection. Automatica, 2012, 48(9): 2107-2115.

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部