期刊文献+

基于超图正则化的域适应偏最小二乘多工况软测量模型

Multi-condition soft sensor modeling of domain adaptation partial least squares based on hypergraph regularization
下载PDF
导出
摘要 针对流程工业中,因多工况导致数据分布变化引起传统软测量模型预测性能恶化问题,本文提出一种基于超图正则化的域适应多工况软测量回归模型框架.首先,采用非线性迭代偏最小二乘回归算法为基模型,在潜变量空间利用历史工况数据重构当前工况数据,以增强工况间的相关性,有效减小数据分布差异;同时,对重构系数施加低秩稀疏约束,保留了数据的局部和全局子空间结构;其次,通过超图拉普拉斯正则项对域适应潜变量求解过程进行约束,避免在寻找潜变量过程中破坏数据结构.最后,利用交替方向乘子法优化求解模型参数.在多个数据集上的实验表明,本文方法在多工况环境下可有效提高软测量模型的预测精度和泛化性能. Multiple conditions in industrial processes can lead to changes in data distribution,which in turn can cause traditional soft sensor models to become inaccurate.Therefore,this paper proposes a domain-adaptive multi-conditions soft sensor regression model framework based on the hypergraph regularization.First,the nonlinear iterative partial least squares algorithm is used as the basic model to reconstruct the current condition data by using historical condition data in the latent variable space,to enhance the correlation between conditions and effectively reduce the differences in data distribution;Meanwhile,a low-rank sparsity constraint is imposed on the reconstructed coefficients to preserve the local and global subspace structure of the data;Secondly,the domain-adaptive latent variable solving process is constrained by the hypergraph regularterm,which effectively avoids the data structure being destroyed in the process of searching for latent variables.Finally,the model parameters are optimized by using the alternating direction multiplier method.Experiments on multiple datasets show that the method can effectively improve the prediction accuracy and generalization performance of the soft sensor model under multiple working conditions.
作者 霍海丹 阎高伟 王芳 任密蜂 程兰 李荣 HUO Hai-dan;YAN Gao-wei;WANG Fang;REN Mi-feng;CHENG Lan;LI Rong(School of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan Shanxi 030024,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第3期396-406,共11页 Control Theory & Applications
基金 国家自然科学基金项目(61973226,62073232) 山西省自然科学基金项目(20210302123189) 山西省重点研发计划项目(201903D121143)资助.
关键词 多工况 超图 结构保持 域适应 软测量 multiple working conditions hypergraph structure preservation domain adaptation soft sensor
  • 相关文献

参考文献7

二级参考文献136

  • 1肖志娇,常会友,衣杨.启发式规则与GA结合的优化方法求解工作流动态调度优化问题[J].计算机科学,2007,34(2):157-160. 被引量:11
  • 2王伟达,王伟,刘文剑.基于仿真的生产计划与调度系统集成[J].计算机工程与设计,2007,28(7):1626-1629. 被引量:5
  • 3尹雪峰,李晓东,陆胜勇,罗建松,谷月玲,严建华,倪明江,岑可法.模拟烟气中痕量有机污染物生成的在线实时监测[J].中国电机工程学报,2007,27(17):29-33. 被引量:11
  • 4刘毅,王海清,李平.局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用[J].化工学报,2007,58(11):2846-2851. 被引量:18
  • 5Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engi- neering, 2014, 26(1): 97-107.
  • 6Syed A R, Gillela K, Venugopal C. The future revolution on big data. International Journal of Advanced Research in Computer and Communication Engineering, 2013, 2(6): 2446-2451.
  • 7Condliffe J. The problem with big data is that nobody und- erstands it [Online], available: http://gizmodo.com/59062- 04/the-problem-wit h-big-dat a-is-t hat- nobody-understan- ds-it, April 30, 2012.
  • 8Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A H. Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute Report [Online], available: http://www.mckinsey.com/insig hts/mgi/research/technology_and_innovation/big_data_the_ next_frontier_for_innovation, June, 2011.
  • 9Halevi G, Moed H. The Evolution of big data as a research and scientific topic: overview of the literature. Special Issue on Big Data, Research Trends, 2012, (30): 1-37.
  • 10Ginsberg J, Mohebbi M H, Patel R S, Brammer L, Smolinski M S, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232): 1012-1014.

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部