期刊文献+

基于冷负荷需求预测的空调系统智能节能控制

Intelligent Energy-Saving Control of Air Conditioning Systems Based onCooling Load Demand Prediction
下载PDF
导出
摘要 冷负荷需求预测是空调系统智能节能控制的核心,通过对建筑物的冷负荷进行实时监测和预测,为空调系统的运行提供依据。为了合理配置与使用空调系统的能源,实现节能,有必要预测冷负荷需求,研究空调系统智能节能控制方法。本文首先收集历史冷负荷数据,建立冷负荷需求预测模型,对空调系统的冷负荷需求进行合理预测,其次设定空调系统节能运行参数,包括温度、湿度、新风量、运行模式和风速等,最后建立空调系统智能节能控制策略优化目标函数,设计空调系统智能节能控制策略,并执行控制动作,以提供节能且舒适的环境。试验表明,提出的方法应用后,节能优势显著,节能率超过26%,能耗明显降低。 Cooling load demand prediction is the core of intelligent energy-saving control in air conditioning systems,and it provides a basis for the operation of air conditioning systems by real-time monitoring and prediction of the cooling load of buildings.In order to reasonably allocate and use energy in air conditioning systems,achieve energy conservation,it is necessary to predict cooling load demand and study intelligent energy-saving control methods for air conditioning systems.In this paper,firstly,historical cooling load data is collected,and a cooling load demand prediction model is established to reasonably predict the cooling load demand of the air conditioning system,and then energy-saving operating parameters are set for the air conditioning system,including temperature,humidity,fresh air volume,operating mode,and wind speed,finally,an optimization objective function for the intelligent energy-saving control strategy of the air conditioning system is established,and an intelligent energy-saving control strategy for the air conditioning system is designed,and control actions are executed to provide an energy-saving and comfortable environment.The experiment shows that the proposed method has significant energy-saving advantages after application,with an energy-saving rate of over 26%and a significant reduction in energy consumption.
作者 邵玉侠 李海龙 刘传明 陆小斐 SHAO Yuxia;LI Hailong;LIU Chuanming;LU Xiaofei(Shandong Hechuang Intelligent Technology Co.,Ltd.,Jinan 250014,China)
出处 《中国资源综合利用》 2024年第4期177-179,共3页 China Resources Comprehensive Utilization
关键词 冷负荷 需求预测 空调系统 智能节能控制 cooling load demand prediction air conditioning system intelligent energy-saving control
  • 相关文献

参考文献5

二级参考文献30

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部