摘要
陶瓷基复合材料力学性能与界面相的微观结构和均匀性有密切关系。本研究在碳纤维布表面沉积PyC界面相,探究沉积温度、丙烯分压、滞留时间和氢气分压等工艺参数对PyC界面相微观结构及均匀性的影响规律。使用多种手段对PyC界面相微观形貌、织构进行表征,并分析了微观结构、均匀性与工艺参数之间的内在关联。结果表明:界面相织构的规整度随沉积温度和丙烯分压的提高而提高,随氢气分压的提高而降低,而受滞留时间影响较小;沉积温度和丙烯分压升高均导致界面相厚度分布更加不均匀,且丙烯分压过高会直接产生炭黑,延长滞留时间有利于提高界面相的均匀性;对于中织构和高织构,随着氢气分压提高,界面相均匀性先降低后增加,而低织构的界面相均匀性受其影响较小。最后,阐明了PyC界面相生长模式,揭示了工艺参数对PyC界面相织构形态及均匀性的影响规律,为PyC界面相的精细调控提供了基础。
Mechanical properties of ceramic matrix composites are highly dependent on the microstructure and homogeneity of the interphase.This study examined the influence of process factors,such as deposition temperature,propylene partial pressure,retention time,and hydrogen partial pressure,on the microstructure and homogeneity of PyC interphase deposited on the surface of carbon fiber cloth.Various characterization techniques were used to characterize the microstructure and texture of the PyC interphase,and the inherent correlation between microstructure,uniformity,and process parameters was analyzed.The results show that increasing temperature and propylene partial pressure lead to a more regular texture in the interphase,while decreasing hydrogen partial pressure has the opposite effect,and retention time has little effects.Additionally,an increase in deposition temperature and propylene partial pressure leads to an uneven distribution of interphase thickness,and overhigh propylene partial pressure directly leads to the production of carbon black.Increasing retention time helps to improve interphase homogeneity.The interphase uniformity of medium and high textures firstly drops and then increases when the hydrogen partial pressure increases,but the interphase uniformity of low texture is less impacted.Ultimately,the study clarified the growth method of the PyC interphase.Furthermore,the research delved into the process factors influencing the texture and uniformity of the PyC interphase,which provided a basis for the fine regulation of PyC interface phase in the future.
作者
薛轶凡
李玮洁
张中伟
庞旭
刘愚
XUE Yifan;LI Weijie;ZHANG Zhongwei;PANG Xu;LIU Yu(Institute of Advanced Structure Technology,Beijing Institute of Technology,Beijing 100081,China;School of Civil Engneering,Beijing Jiaotong University,Beijing 100044,China;State Key Laboratory of Powder Metallurgy,Powder Metallurgy Research Institute,Central South University,Changsha 410083,China)
出处
《无机材料学报》
SCIE
EI
CAS
CSCD
北大核心
2024年第4期399-408,I0010-I0012,共13页
Journal of Inorganic Materials
基金
国家重点研发计划(2022YFB3706100)。