期刊文献+

应用程序属性感知的Yarn资源调度模型研究

Research on application attribute aware Yarn resource scheduling model
下载PDF
导出
摘要 Hadoop应用程序存在计算密集属性和调度时间属性,但是Hadoop大数据平台集成的第二代资源管理器Yarn内置的三种资源调度器无法将相同属性的应用程序均衡分配到计算节点上,导致部分节点负载过高,出现严重的计算任务长尾效应。文中提出了一种应用程序属性感知的Yarn负载均衡调度模型——APB Scheduler。APB Scheduler自动感知应用程序属性,将相同属性应用程序的Container按照动态资源计划均衡分配到集群计算节点上,并使用NSGA-Ⅲ算法完成最优分配方案计算。实验结果表明,APB Scheduler解决了相同属性应用程序的Container分配倾斜问题,大幅提升了集群的性能和稳定性。 Hadoop applications have computation intensive and scheduling time attributes.However,the three built-in resource schedulers of the second generation resource manager,which is integrated in Hadoop big data platform,are unable to evenly distribute applications with the same attributes to the computing nodes,resulting in excessive load on some nodes and serious long tail effect of computing tasks.This paper presents an application attribute aware yarn load balancing scheduling model-APB Scheduler.APB Scheduler automatically perceive the application attributes,evenly allocate the containers of the same attribute application to the cluster computing nodes according to the dynamic resource plan,and use the NSGA-III algorithm to complete the calculation of the optimal allocation scheme.Through experimental verification,APB Scheduler solves the container allocation skew problem of applications with the same content,and greatly improves the performance and stability of the cluster.
作者 陈宁宁 CHEN Ning-ning(Department of Technology,Xi’an International University,Xi’an 710077,China)
出处 《信息技术》 2024年第4期36-43,共8页 Information Technology
基金 陕西省自然科学基金资助项目(2020JM-637) 陕西省教育科学“十四五”规划项目(SGH21Y0303) 陕西省高等教育教学改革研究项目(21ZY015) 陕西省教育科学“十三五”规划研究项目(SGH20Y1420)。
关键词 NSGA-Ⅲ算法 YARN 资源调度 NSGA-III Yarn resource scheduling
  • 相关文献

参考文献8

二级参考文献53

  • 1刘正伟,文中领,张海涛.云计算和云数据管理技术[J].计算机研究与发展,2012,49(S1):26-31. 被引量:170
  • 2董新华,李瑞轩,周湾湾,王聪,薛正元,廖东杰.Hadoop系统性能优化与功能增强综述[J].计算机研究与发展,2013,50(S2):1-15. 被引量:70
  • 3BRYANT R E. Data intensive supercomputing: the case for DISC, CMU technical report CMU-CS- 07-128 [ R]. Pittsburgh: Department of Computer Science, Carnegie Mellon University,2007.
  • 4PAVLO A,PAULSON E,RASIN A,et al. A comparison of approaches to large-scale data analysis [ C ]//Proc of SIGMOD International Conference on Management of Data. New York :ACM Press ,2009:165-178.
  • 5DEAN J,GHEMAWAT .S. MapReduce : simplified data processing on large clusters[ C ]//Proc of the 6th Conference on Operating Systems De- sign & Implementation. Berkeley: USENIX Association ,21304:137-150.
  • 6Apache Hadoop [ EB/OL ]. [ 2009 - 03- 06 ]. http://hadoop, apache. otg/.
  • 7RAO B T,SRIDEVEI N V,REDDY V K,et, al. Performance issues of heterogeneous Hadoop clusters in cloud computing[ J]. Global dour- nal Computer Science & Technology,2011,11 (8) :81-87.
  • 8ZAHARIA M, KONWINSKI A, JOSEPH A D, et al. Improving MapReduce performance in heterogeneous environments[ C ]//Proc of the 8th USENIX Conference on Operating Systems Design and Imple- mentation. Berkeley : USENIX Association,2008:29-42.
  • 9GUO Lei-tao, SUN Hong-wei, LUO Zhi-guo. A data distribution aware task scheduling strategy for MapReduce system [ C ]//Proc of the 1 st International Conference on Cloud Computing. 2009:694-699.
  • 10POLO J, CARRERA D, BECERRA Y,et aL Performance-driven task co-scheduling for MapReduce environments [ C ]//Proc of the 12th IEEE/IFIP Network Operations and Management Symposium. Piseataway : IEEE Press ,2010:373- 380.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部