期刊文献+

基于弹性振动和深度学习的变压器状态识别

Research on transformer state recognition based on elastic vibration and deep leaning
下载PDF
导出
摘要 针对当前传统的变压器状态识别算法需要人工干预的问题,研究了一种能够自动提取特征并分类的一维卷积神经网络算法。该算法通过3层卷积池化层自动提取信号特征,并通过全连接层展为一维矢量,最终通过Softmax层进行分类。鉴于弹性振动信号抗干扰能力较强,选择弹性振动信号作为信号处理研究对象,运用基于一维卷积神经网络和弹性振动的方法对变压器状态进行识别,并通过采集500kV变压器的弹性振动信号获取的数据集进行验证,结果表明该算法的准确率优于BP、SVM和SAE算法,能对变压器的不同状态实现自动有效识别。 In order to overcome the shortcomings of traditional transformer state recognition algorithms that require human intervention,this paper proposes a new state recognition method,which uses the One-Dimensional Convolutional Neural Network(the 1D-CNN algorithm)to automatically extract the features and classify.The algorithm could automatically extract the signal features through three convolutional and pooling layer,expands the extracted features into a 1D vector through a fully connected layer,and finally classifies the signals through a Softmax layer.Since the strong anti-interference capability of the elastic vibration,a dataset of elastic vibration signals of a 500kV transformer is used to verify the proposed algorithm,and shows that the accuracy of the 1D-CNN algorithm is higher than BP,SVM and SAE in transformer state recognition.
作者 马裕超 汪欣 周文晋 王旭 潘文 MA Yu-chao;WANG Xin;ZHOU Wen-jin;WANG Xu;PAN Wen(China Electric Power Research Institute,Beijing 100055,China;Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;Institute of Acoustics,Tongji University,Shanghai 200092,China;Changzhou Toshiba Transformer Co.,Ltd.,Changzhou 213012,Jiangsu Province,China)
出处 《信息技术》 2024年第4期126-130,136,共6页 Information Technology
基金 国家电网公司科技项目资助(5200-201955099A-0-0-00)。
关键词 变压器 状态识别 深度学习 一维卷积神经网络 模式识别 transformer state recognition deep learning one-dimensional convolutional neural network pattern classification
  • 相关文献

参考文献6

二级参考文献34

  • 1时文刚,刘树林,张嘉钟,黄文虎.基于支持向量机的往复泵泵阀故障诊断方法[J].机械强度,2002,24(3):362-364. 被引量:32
  • 2徐文,王大忠,周泽存,陈珩.人工神经网络在变压器特征气体法故障诊断中的应用[J].高电压技术,1996,22(2):27-30. 被引量:26
  • 3齐义禄.电力线路技术手册[M].兵器工业出版社,1993..
  • 4Yan Weiwu,Shao Huihe.Application of support vector machine nonlinear classifier to fault diagnoses[A].In:Proceeding of the 4th World Congress Intellengen Control and Automtion[C].Shanghai,China:2002:2697~2670.
  • 5Jack L B,Nandi A K.Fault detection using support vector machines and artificial neural networks,augmented by genetic algorithms[J].Mechanical Systems and Signal Processing,2002,16(2-3):373-390.
  • 6Tay Francis E H,Cao Lijuan.Application of support vector machines in financial time series forecasting[J].Omega,2001,29(4):309-317.
  • 7Chan W C,Chan C W,Cheung K C,et al.On the modelling of nonlinear dynamic systems using support vector neural networks[J].Engineering Applications of Artificial Intelligence,2001,14:105-113.
  • 8Cortes C,Vapnik V.Support-vector,networks[J].Machine Learning,1995,20(1):273-295.
  • 9Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 10路长柏.电力变压器计算.黑龙江科学技术出版社,1996.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部