期刊文献+

Insulation Design Rule for a Spacer in SF_(6)/N_(2)-filled DC Gas Insulated Apparatus

原文传递
导出
摘要 A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatus.A novel design rule is proposed considering the effect of accumulated charge on the threshold of electric field strength being resistant to the superposed voltage.A surface charge accumulation simulation model is introduced,and the key parameters in the simulation model are measured.In addition,an experimental platform for a 100 kV spacer flashover test is established.Spacer flashover tests under superimposed voltage with opposing polarities are carried out,and the withstanding voltage of the spacer is obtained.Finally,based on the proposed model,the threshold of the surface electric field strength(tangential component)on the DC spacer in SF_(6)/N_(2) mixed gases is discussed.For a reliable insulation design of a DC GIS/GIL apparatus filled with 0.7 MPa SF_(6)/N_(2),the threshold of surface electric field strength on the DC spacer is 12 kV/mm.The insulation design rule can be referenced in the design of a high-voltage DC SF_(6)/N_(2)-filled GIS/GIL apparatus.
出处 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期727-735,共9页 中国电机工程学会电力与能源系统学报(英文)
基金 supported in part by the National Basic Research Program of China(973 Program)(2014CB239500) Young Elite Scientists Sponsorship Program by CAST YESS20160004 the Fundamental Research Funds for the Central Universities(2019MS006).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部