期刊文献+

液冷型燃料电池热管理子系统建模与控制研究

Modeling and control of thermal management subsystem for liquid-cooled PEMFC
下载PDF
导出
摘要 温度是影响燃料电池系统性能的关键因素之一,利用热管理子系统实现良好的温度控制是提高燃料电池性能及寿命的重要手段。针对液冷型燃料电池热管理子系统,在分析其结构及工作原理的基础上,利用机理及经验公式建立完整的热管理系统模型,并利用该模型分析燃料电池的温度特性,仿真结果表明合适的温度能够有效提高系统性能。制定相应的控制策略实时调节冷却系统进而实现电堆温度控制,采用流量跟随的方法削弱了控制变量间的耦合作用,仿真结果表明该控制策略能够实现电堆温度的有效控制,在负载连续变化的情况下将出口温度及温差稳定在理想范围内。 Temperature is one of the key factors affecting the performance of fuel cell system.Using thermal management subsystem to achieve good temperature control is an important means to im-prove the performance and life of fuel cell.In this paper,based on the analysis of the structure and working principle of the thermal management subsystem of liquid-cooled fuel cells,a complete ther-mal management system model was established by using the mechanism and empirical formula,and the temperature characteristics of fuel cells were analyzed by using the model.The simulation results show that the appropriate temperature can effectively improve the system performance.The corre-sponding control strategy was developed to adjust the cooling system in real time,so as to realize the reactor temperature control.The coupling effect between the control variables was weakened by the flow following method.The simulation results show that the control strategy can effectively control the reactor temperature,and keep the outlet temperature and temperature difference within the ideal rangeunder the condition of continuous load changes.
作者 刘如意 王哲 李玲莲 姜挥 LIU Ruyi;WANG Zhe;LI Linglian;JIANG Hui(School of Automotive Studies,Tongji University,Shanghai 201804,China;Shanghai Kalu Automation Science and Technology Co.,Shanghai 200439,China)
出处 《电源技术》 CAS 北大核心 2024年第4期701-710,共10页 Chinese Journal of Power Sources
基金 上海市科学技术委员会项目(22dz1206602)。
关键词 燃料电池 热管理 系统建模 温度控制 fuel cell thermal management system modeling temperature control
  • 相关文献

参考文献7

二级参考文献43

  • 1KIRUBAKARAN A, JAIN S, NEMA R K. A review on fuel cell technologies and power electronic interface[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2430 - 2440.
  • 2YU S, JUNG D. Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area[J]. Renewable Energy, 2008, 33(12): 2540 - 2548.
  • 3SCHUMACHER J O, GEMMAR P, DENNE M, et al. Control of miniature proton exchange membrane fuel cells based on fuzzy logic[J], Journal of Power Sources, 2004, 129(2): 143 - 151.
  • 4ZHANG H G, LIU D R. Fuzzy modeling and fuzzy control[M] //Control Engineering. Boston, American: Birkhauser, 2006.
  • 5YU X C, ZHOU B, SOBIESIAK A. Water and thermal management for Ballard PEM fuel cell stack[J]. Journal of Power Sources, 2005, 147(1/2): 184- 195.
  • 6ARS1E I, DI DOMENICO A, PIANESE C. Modeling and analysis of transient behavior of polymer electrolyte membrane fuel cell hybrid vehicles[J]. Journal of Fuel Cell Science and Technology, 2007, 4(3): 261 - 271.
  • 7SLADE S M, RALPH T R, LEoN C P, et al. The ionic conductivity of a nation 1100 series of proton-exchange membranes re-cast from Butan-l-ol and Propan-2-ol[J]. Fuel Cells, 2010, 10(4): 567 -574.
  • 8PUKRUSHPAN J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan: University of Michigan, 2003.
  • 9HEINZEL A, ROES J, BRANDT H. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas[J]. Journal of Power Sources, 2005,145(2): 312- 318.
  • 10GOU B. KI NA W, DIONG B. Fuel Cells: Modeling. Control and Application[M]. Boca Raton, American: Taylor and Francis Group CRC Press, 2010.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部