摘要
对一种多任务卷积神经网络的人脸识别性能进行研究与优化。该神经网络采用3个独立的任务网络分别进行人脸检测、关键点定位和人脸识别。让3个任务网络在训练过程中共享底层卷积层的特征表示,使得模型能针对多个任务同时进行学习,进而提高其泛化能力和识别精度。为了增强模型对图像的学习能力,采用一种数据增强和迁移学习技术,使人脸识别系统的准确性、鲁棒性和可靠性均得到了显著提升。研究结果为发展人脸识别技术提供了新的思路,尤其在处理复杂场景和多样化人脸图像方面具有一定的应用前景。
This study investigates the performance of a multi-task convolutional neural network for face recognition.The model employs three independent task networks dedicated to face detection,keypoint localization,and face recognition,respectively.These three networks share the features of the underlying convolutional layers during the training process,enabling the model to simultaneously learn multiple tasks and thereby improving the generalization capability and recognition accuracy.To enhance the model’s learning ability for images,data augmentation and transfer learning techniques are proposed.These techniques significantly enhance the accuracy,robustness,and reliability of the face recognition system.The research results offer valuable insights for the further development of face recognition technology,particularly in addressing complex scenarios and diverse facial images,opening up potential applications.
作者
叶惠仙
YE Huixian(School of Information Engineering,Fujian Agricultural Vocational and Technical College,Fuzhou 350007,China)
出处
《中原工学院学报》
CAS
2024年第1期8-13,共6页
Journal of Zhongyuan University of Technology
关键词
多任务学习
多任务卷积神经网络(MTCNN)
人脸识别
网络性能优化
multi-task learning
multi-task convolutional neural network(MTCNN)
face recognition
network performance optimization