期刊文献+

针对文本分类对抗样本的防御技术

Adversarial example defense technology for text classification
下载PDF
导出
摘要 虽然文本分类对抗样本的防御技术在相应的工作中取得了较好的效果,但是防御技术在检测词级和句子级的对抗样本时效果不佳,因此,如何利用防御技术提高目标模型的鲁棒性(Robust)已是目前学术界关注的问题为此提出了一种新的运算法,使用了单词的重要性分数及检测错误字的概率来定位样本中的对抗字。结果表明:目标模型的分类准确率由原来平均14.7%提高到平均89.2%,改善了文本分类对抗样本的防御技术。 Although the defense technology of text classification adversarial examples has achieved good results in the corresponding work,it is not effective in detecting word-level and sentence-level adversarial examples.Thus,how to use defense technology to im-prove the robustness of the target model(Robust)has been the focus of academic community.This paper proposed a new algorithm to achieve defense against text classification adversarial examples.This method used the importance score of words and the detection of wrong words probabilities to locate the adversarial words in the sample.The results show that the classification accuracy of the target model increases from the original average of 14.7%to an average of 89.2%,then the adversarial example defense techniques for text classification also improves.
作者 张子越 王永平 张晓琳 顾瑞春 徐恩惠 张帅 ZHANG Ziyue;WANG Yongping;ZHANG Xiaolin;GU Ruichun;XYU Enhui;ZHANG Shuai(Information Engineering School,Inner Mongolia University of Science and Technology,Baotou 014010,China;China Nanhu Academy of Electronics and Information Technology,Jiaxing 314001,China;School Computer Engineering and Science,Shanghai University,Shanghai 200444,China)
出处 《内蒙古科技大学学报》 CAS 2024年第1期98-102,共5页 Journal of Inner Mongolia University of Science and Technology
基金 国家自然科学基金(61562065)。
关键词 鲁棒性 对抗样本 掩码 防御技术 robustness adversarial example mask defense technology
  • 相关文献

参考文献4

二级参考文献6

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部