摘要
随着人工智能技术日新月异的发展,新工科建设为“机器学习”课程提出了新的挑战。目前诸多高校在机器学习教学中仍然采用固定的教学内容、侧重于单一的教学方式,课程实验简单且应用实践较少。文章针对“机器学习”课程涉及多学科交叉、技术更新快速以及强调编程实操能力,导致教学效果不理想,不利于创新型、技术型人才培养的问题,从教学内容的更新迭代、混合教学模式创新、课程实验的项目启发以及多方位考核四个方面提出了具体的改革方案。
With the rapid development of artificial intelligence technology,the construction of new engineering disciplines has provided new challenges for the"Machine Learning"course.At present,many universities still adopt fixed teaching content and focus on a single teaching method in machine learning teaching,with simple course experiments and limited practical applications.The article proposes specific reform plans from four aspects:updating and iterating teaching content,innovating blended teaching models,inspiring course experiments,and conducting multi-dimensional assessments,in response to the problems of interdisciplinary and rapid technological updates,as well as emphasizing practical programming skills in machine learning courses,which result in unsatisfactory teaching outcomes and hinder the cultivation of innovative and technical talents.
作者
张亚茹
郝定溢
ZHANG Yaru;HAO Dingyi(School of Artificial Intelligence,Anhui University of Science and Technology,Huainan,Anhui 232001;School of Safety Science and Engineering,Anhui University of Science and Technology,Huainan,Anhui 232001)
出处
《科教导刊》
2024年第8期105-108,共4页
The Guide Of Science & Education
基金
长三角区域安全工程专业教育部虚拟教研室开放课题(CSJAQXN-2310)
教育部虚拟教研室公共安全类学科协作组开放课题(GAXNXZ-2301)。
关键词
人工智能
新工科
机器学习
项目驱动
artificial intelligence
new engineering
machine learning
project-driven